Probing the electronic properties of dichromium oxide clusters \(\text{Cr}_2\text{O}_n^- (n=1–7) \) using photoelectron spectroscopy

Hua-Jin Zhai and Lai-Sheng Wang

Department of Physics, Washington State University, Richland, Washington 99354
and Chemical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352

(Received 5 September 2006; accepted 13 September 2006; published online 25 October 2006)

In an effort to elucidate the variation of the electronic structure as a function of oxidation and composition, we investigated an extensive series of dichromium oxide clusters, \(\text{Cr}_2\text{O}_n^- (n=1–7) \), using photoelectron spectroscopy (PES). Well-resolved PES spectra were obtained at several photon energies. While low photon energy spectra yielded much better spectral resolution, high photon energy data allowed both \(\text{Cr} \) 3d- and O 2p-derived detachment features to be observed. The overall spectral evolution of \(\text{Cr}_2\text{O}_n^- \) exhibits a behavior of sequential oxidation with increasing oxygen content, where low binding energy \(\text{Cr} \) 3d-based spectral features diminish in numbers and the spectra shift towards higher binding energies as a result of charge transfer from Cr to O. Evidence was obtained for the population of low-lying isomers for \(\text{Cr}_2\text{O}_2^- \), \(\text{Cr}_2\text{O}_3^- \), and \(\text{Cr}_2\text{O}_6^- \). The current data are compared with previous studies and with related studies on \(\text{W}_2\text{O}_n^- \) and \(\text{Mo}_2\text{O}_n^- \).

I. INTRODUCTION

Chromium oxides are important materials with broad technological applications.\(^1\) Chromium oxide-based catalysts are responsible for numerous industrial processes,\(^2\) whereas \(\text{CrO}_2 \) is widely used in magnetic recording tapes and other thin film applications.\(^3,4\) Both the catalytic activity and magnetic properties of chromium oxides are closely dependent on their compositions. In the gas phase, dichromium oxide clusters\(^5,6\) and bare \(\text{Cr}_3 \) dimer\(^7,8\) are intriguing species. Chromium possesses a unique half-filled 3d\(^{4s}\) electronic configuration. In \(\text{Cr}_2 \), antiferromagnetic spin coupling leads to a \(^{3}\Sigma^+ \) singlet ground state and a formal bond order of six.\(^15–24\) The \(\text{Cr}_2^- \) anion also has an antiferromagnetic spin coupling and a magnetic moment of \(1\mu_B \).\(^20\) However, the \(\text{Cr}_2^- \)cation was recently predicted by density functional theory (DFT) calculations to possess a ferromagnetic spin coupling and a high magnetic moment of \(11\mu_B \).\(^24\) Reddy et al.\(^5,6\) conducted DFT calculations on \(\text{Cr}_2\text{O}_n^- (n=1–6) \) clusters and found oscillatory magnetic coupling as a function of \(n \). Pandey and co-workers\(^7,8\) also reported DFT studies on \(\text{Cr}_2\text{O}_n^- (n=1–4) \). More recently, Kondow and co-workers\(^9,10\) reported a combined photoelectron spectroscopy (PES) and DFT study on \(\text{Cr}_2\text{O}^- \), \(\text{Cr}_2\text{O}_2^- \), and \(\text{Cr}_2\text{O}_3^- \). They found highly spin-polarized electronic structure and ferromagnetic coupling in these clusters and raised the interesting possibility of chemical control of magnetism.

We have been interested in understanding the structural and electronic properties of transition metal oxide clusters, which are used as molecular level models for the complicated catalytic surfaces and for providing possible mechanistic insight into the catalytic activity. The current work represents a continuation of our research interest in metal oxide clusters.\(^25–38\) Among our previous PES studies is the characterization of a series of monochromium oxide clusters, \(\text{CrO}_7^- \) and \(\text{CrO}_5^- (n=1–5) \).\(^31\) In another closely relevant recent work,\(^33,35\) we have characterized the electronic and structural properties of \(\text{W}_2\text{O}_n^- (n=1–7) \). We have found superoxide species\(^38\) and \(d\)-orbital aromaticity\(^36\) in tungsten oxide clusters. Jarrold and co-workers have recently investigated the electronic structure and chemical reactivity of several related dimolybdenum oxide clusters.\(^39,40\)

Here we report a PES study of a complete series of dichromium oxide clusters \(\text{Cr}_2\text{O}_n^- \) ranging from \(n=1 \) to 7 systematically at several photon energies. Significantly better resolved spectra have been obtained for \(n=1–3 \) and are compared with the previous studies.\(^9,10\) As a result, several major reassignments are made. We have observed that the overall PES spectral evolution displays a behavior of sequential oxidation with increasing oxygen content. Evidence is also obtained for the coexistence of isomers for \(\text{Cr}_2\text{O}_2^- \), \(\text{Cr}_2\text{O}_3^- \), and \(\text{Cr}_2\text{O}_6^- \). Electron affinities are obtained for all the neutral \(\text{Cr}_2\text{O}_n \) clusters, which are observed to increase with \(n \) due to the sequential oxidation. Comparisons with the related iso-electronic systems, \(\text{W}_2\text{O}_n^- \) and \(\text{Mo}_2\text{O}_n^- \), are also made.

II. EXPERIMENTAL METHOD

The experiment was carried out using a magnetic-bottle-type PES apparatus equipped with a laser vaporization supersonic cluster source, details of which have been described previously.\(^41,42\) Briefly, chromium oxide cluster anions were produced by laser vaporization of a pure chromium target in the presence of a helium carrier gas seeded with 1% \(\text{N}_2\text{O} \) or 0.5% \(\text{O}_2 \). Various \(\text{Cr}_n\text{O}_m^- \) clusters were produced from the source and analyzed using a time-of-flight mass spectrometer. The \(\text{Cr}_2\text{O}_n^- (n=1–7) \) species of current interest were each mass selected and decelerated before being photodetached. Four detachment photon energies were used in the
present study: 532 nm (2.331 eV), 355 nm (3.496 eV), 266 nm (4.661 eV), and 193 nm (6.424 eV). Photoelectrons were collected at nearly 100% efficiency by the magnetic bottle and analyzed in a 3.5-m-long electron flight tube. The photoelectron spectra were calibrated using the known spectrum of Rh⁺, and the energy resolution of the PES apparatus was ΔE/k = 2.5%, that is, ~25 meV for 1 eV electrons.

It was noted that the highly oxygen deficient species (e.g., Cr₂O⁻ and Cr₂O₂⁻) were extremely reactive and had exhibited very low abundance when the 0.5% O₂ or 1% N₂O seeded helium carrier gas was used. Instead, they were produced with a pure helium carrier gas as impurities, where oxide contamination on the target surface or residual oxygen inside the nozzle served as the oxygen source. We also found that both 0.5% O₂ and 1% N₂O seeded helium carrier gases were good oxygen sources to produce the Cr₂O₆⁻ clusters; but the N₂O-seeded He carrier gas represented a more gentle oxygen source and tended to produce relatively colder oxide clusters. We have shown previously that cluster temperature control is essential for high quality PES experiments. All data presented in the current study were obtained using the He carrier gas seeded with 1% N₂O or pure He carrier gas, unless specifically stated otherwise.

III. RESULTS

The PES spectra for Cr₂O₇⁻ (n=1−6) at different photon energies are shown in Figs. 1–8, whereas Fig. 9 compares all the spectra for n=1−7 at 193 nm. The observed electronic transitions are labeled with letters and the measured adiabatic detachment energy (ADE) and vertical detachment energy (VDE) and vibrational frequencies are summarized in Table I.

A. Cr₂O⁻

The PES spectra of Cr₂O⁻ at four photon energies are shown in Fig. 1, which revealed complicated and congested electronic transitions. The 532 nm spectrum [Fig. 1(a)] revealed four relatively sharp bands (X, A, B, and C). However, the lowest energy band ranging from 0.7 to 1.5 eV appeared to consist of an intense and sharp feature (X) sitting on top of a broad band (X'). X and X' were likely due to two overlapping electronic transitions. The VDE of the X' band was estimated to be ~1.1 eV. Since no vibrational structures were resolved for the X' band, the ADE was estimated by drawing a straight line at its leading edge on the low energy side, and then adding the instrumental resolution to the intersection with the binding energy axis. For sharp spectral onsets, this method can yield relatively accurate and consistent ADE values. However, for Cr₂O⁺, the obtained value, 0.9±0.1 eV, should be viewed as the upper limit for the ADE due to the broad nature of band X', which indicates a large geometry change between the ground states of Cr₂O⁻ and Cr₂O. Features X, A, B, and C were all very sharp and well-defined; their VDEs were measured to be 1.17, 1.71, 1.95, and 2.12 eV, respectively.

The 355 nm spectrum showed more complicated features at higher binding energies [Fig. 1(b)]. Band D was tentatively labeled, which became better defined in the 266 and 193 nm spectra. But there were likely unresolved electronic transitions in the energy ranges around bands C and D from 2.1 to 3 eV. Band E was very sharp with a VDE of 3.20 eV in the 266 nm spectrum. The high photon energy spectra at 266 and 193 nm did not produce any additional well-resolved transitions and revealed essentially continuous signals beyond 3 eV.

B. Cr₂O₂⁻

The spectra of Cr₂O₅ at four detachment photon energies are shown in Fig. 2. One major band (X) was observed at 532 nm with a VDE of 1.69 eV and an ADE of 1.65 eV. This band exhibited discernible fine features with an average spacing <0.300 cm⁻¹, which was likely due to a low frequency bending mode. Very weak signals (X') were present at low binding energies around ~1.2 eV. The extremely low intensity of this band suggested that it probably came from a

<table>
<thead>
<tr>
<th>Species</th>
<th>Observed feature</th>
<th>ADE (eV)</th>
<th>VDE (eV)</th>
<th>Vibrational frequency (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr₂O⁻</td>
<td>X'</td>
<td>0.9 (1)</td>
<td>~1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>1.17 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>1.71 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1.95 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>2.12 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>2.61 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>3.20 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr₂O₂⁻</td>
<td>X</td>
<td>1.65 (3)</td>
<td>1.69 (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>2.52 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2.99 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3.16 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>3.81 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃⁻</td>
<td>X</td>
<td>1.68 (2)</td>
<td>1.83 (5)</td>
<td>620 (30), 280 (30)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>2.36 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3.01 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3.14 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>3.71 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>4.16 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr₂O₅⁻</td>
<td>X</td>
<td>2.55 (3)</td>
<td>2.84 (5)</td>
<td>630 (50)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>4.12 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4.70 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.62 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>6.28 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr₂O₆⁻</td>
<td>X</td>
<td>3.49 (2)</td>
<td>3.82 (5)</td>
<td>710 (50)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>4.58 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>5.17 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5.60 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>6.13 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr₂O₇⁻</td>
<td>X</td>
<td>4.28 (2)</td>
<td>4.45 (5)</td>
<td>780 (50)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>5.98 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>6.28 (3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The numbers in parentheses represent experimental uncertainties in the last digits. The ADE also represents the electron affinity of corresponding neutral species.
very weakly populated low-lying isomer. At 355 nm [Fig. 2(b)], three more bands A, B, and C were revealed at VDEs of 2.52, 2.99, and 3.16 eV, respectively, following a significant energy gap of ~0.8 eV after the X band. Band A was vibrationally resolved with a short vibrational progression and a spacing of 890 cm\(^{-1}\). At 266 nm [Fig. 2(c)], a rather broad band (D) was observed at ~3.8 eV, which became better defined at 193 nm. However, beyond 4 eV the 193 nm spectrum became continuous without any resolved features.

C. \(\text{Cr}_2\text{O}_3\)

Figure 3 shows the PES spectra of \(\text{Cr}_2\text{O}_3^-\) at four photon energies. The 532 nm spectrum revealed the ground state transition X with rich fine features. As shown in the inset of Fig. 3(a), a total of nine peaks were resolved: a: 1.68 eV, b: 1.71 eV, c: 1.75 eV, d: 1.79 eV, e: 1.83 eV, f: 1.87 eV, g: 1.91 eV, h: 1.94 eV, and i: 1.98 eV, which appeared to be due to two vibrational progressions, a high frequency mode with a spacing of 620 cm\(^{-1}\) and a low frequency mode with a frequency ~280 cm\(^{-1}\). The ADE of band X was defined by the fine feature a at 1.68 eV, whereas the VDE of band X was defined by the feature e at 1.83 eV. At 355 nm, a broad band A was observed with a VDE of 2.36 eV [Fig. 3(b)]. Two relatively sharp bands B and C were also observed at higher binding energies with VDEs of 3.01 and 3.14 eV, respectively. The 266 and 193 nm spectra revealed congested PES features at higher binding energies. Two broad features D and E could be tentatively identified.

We observed that under hot source conditions the relative intensity of band X appeared to increase. Figure 4 shows a 193 nm spectrum measured by using 0.5% O\(_2\) seeded He carrier gas, which produced relatively hot clusters. The intensity increase of band X under the hot source conditions suggested that it contained contributions from a low-lying isomer.
Due to the increase of electron binding energies, we could only measure the spectra of Cr$_2$O$_4^-$ at 355, 266, and 193 nm, as shown in Fig. 5. The 355 nm spectrum revealed a broad band for the ground state transition X with discernible fine features. The lower binding energy part of the band appeared to be better resolved than the higher binding energy part, and a vibrational spacing of 630 cm$^{-1}$ could be identified. The ADE and VDE of band X were evaluated to be 2.55 and 2.84 eV, respectively. The lowest binding energy peak, labeled “HB,” was assigned as a hot band transition because of its larger spacing from the 0-0 transition.

The 266 nm spectrum resolved a second band A at a VDE of 4.12 eV, following a large energy gap of \sim1.3 eV from band X. At 193 nm, three more broad bands were observed. Band B at 4.70 eV was relatively weak, whereas bands C and D were both very intense.

Figures 3 and 4 illustrate the photoelectron spectra of Cr$_2$O$_3^-$ and Cr$_2$O$_4^-$ under typical conditions, respectively. These spectra provide insights into the electronic structure and vibrational properties of these complexes. The inset in Fig. 3(a) highlights the fine features within band X. The vertical bars in Fig. 4 represent the resolved vibrational structures. "HB" stands for a hot band transition.
E. Cr₂O₅⁻

Only 266 and 193 nm photons were able to access detachment transitions for Cr₂O₅⁻, as shown in Fig. 6. The 266 nm spectrum revealed the ground state transition \(^{1}Σ_u^+ \rightarrow ^{1}Σ_g^+\) with a partially resolved vibrational progression and a spacing of 710 cm⁻¹, similar in shape to the ground state transition in Cr₂O₄⁻ [Fig. 5a]. The ADE and VDE for the ground state transition were measured to be 3.49 and 3.82 eV, respectively. At 193 nm, four more bands, A, B, C, and D, were revealed at 4.58, 5.17, 5.60, and 6.13 eV, respectively.

F. Cr₂O₆⁻

Similar to Cr₂O₅⁻, only 266 and 193 nm photons were able to detach electrons from Cr₂O₆⁻, as shown in Fig. 7. The 266 nm spectrum revealed the ground state transition \(^{1}Σ_u^+ \rightarrow ^{1}Σ_g^+\), which showed a partially resolved vibrational progression with a spacing of 780 cm⁻¹. The 0-0 transition defined an ADE of 4.28 eV. A weak and broad feature \(^{1}Σ_u^+\) was observed at lower binding energies. The 193 nm spectrum [Fig. 7(b)] resolved two intense and sharp bands at higher binding energies, A (VDE: 5.98 eV) and B (VDE: 6.28 eV), following a large gap (~1.7 eV) from the X band. However, some weak signals (A') were also observed in the gap region. Under hot source conditions, we found that bands X' and A' were significantly enhanced (Fig. 8), suggesting that they were due to a low-lying isomer.

G. Cr₂O₇⁻

We recently reported the PES spectra of Cr₂O₇⁻ along with other \(M_xO_7^{2-}\) and \(M_2O_7^-\) (M=Cr,Mo,W) species at 193 and 157 nm, as well as DFT calculations on the W species. For completeness, the 193 nm spectrum of Cr₂O₇⁻ is again presented in Fig. 9, where it is compared to the other Cr₂O₅⁻ species. The Cr₂O₇⁻ spectrum revealed a ground state transition and a partial band for the first excited state at very high electron binding energies. The ground state transition was well-defined with a VDE of 5.90 eV and an ADE of 5.57 eV.
A. Cr$_2$O$^-$ and Cr$_2$O$_2^-$: Ferromagnetic clusters

Cr$_2$O$^-$ and Cr$_2$O$_2^-$ and their neutrals were investigated both experimentally9,11 and theoretically5,10 in several previous studies. Kondow and co-workers9,10 recently reported a combined PES and DFT study on Cr$_2$O$_n^-$ ($n=1–3$), in which relatively low resolution 355 nm spectra were presented and compared with their DFT calculations. The ground state of Cr$_2$O$^-$ was predicted to be a high spin state ($S=9/2$) (ferromagnetic) with C_{2v} symmetry and a long Cr–Cr distance of 2.85 Å. The low spin isomer ($S=1/2$) (antiferromagnetic) was found to be 1.6 eV higher in energy with a much shorter Cr–Cr distance of 1.83 Å. They made semiquantitative spectral assignments according to their DFT calculations and identified three bands (X, A, and B), which were consistent with the current 266 nm data. However, in the current study the lowest energy band was resolved into a sharp peak X and a broad band X' [Fig. 1(a)], which were thought to be one broad band by Kondow and co-workers,9,10 as that shown in the 266 nm spectrum [Fig. 1(c)]. Our observation calls for a new spectral assignment, as shown in Table II.

Kondow and co-workers assigned the ground state transition with a calculated VDE of 1.08 eV ($^{11}B_2$, Table II) to the broad X band in their spectrum and assigned the transitions at VDEs 1.65 eV ($^{3}A_2$) and 1.68 eV ($^{3}A_1$) to the A band, which was less well resolved in the previous study. Clearly, these assignments need revisions in light of the current data, because (1) the band A is in fact very sharp and is unreasonable to be assigned to two electronic transitions (Fig. 1) and (2) two electronic states are now resolved in the low binding energy band (X' and X). We propose to reassign the spectral transitions, as given in Table II. In the new assignment, the ground state transition ($^{11}B_2$) is assigned to the broad band X', the $^{3}A_2$ transition to the X band, and the $^{3}A_1$ transition to the A band. Kondow and co-workers’ DFT calculations showed that there is a large geometry change in the Cr–Cr–O–Cr angle between the ground states of Cr$_2$O$^-$ and Cr$_2$O, consistent with the broad X' band. They also found that there is less geometry change for the transitions to the $^{9}A_2$ and $^{9}A_1$ excited states, consistent with the sharper peaks observed for bands X and A. The reassignment suggests that

![FIG. 9. Comparison of the 193 nm photoelectron spectra of Cr$_2$O$_n^-$ ($n=1–7$), d denotes photodetachment transitions from Cr 3d-derived orbitals and p denotes those from O 2p-derived orbitals.](image)

Table II. Comparison of the observed detachment transitions with previous DFT calculations from Ref. 10. All energies are in eV.

<table>
<thead>
<tr>
<th></th>
<th>Current VDE</th>
<th>Theoretical VDE (final state)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr$_2$O$^{(10)B_2}$</td>
<td>1.1 (X')</td>
<td>1.08 ($^{1}B_2$)</td>
</tr>
<tr>
<td></td>
<td>1.17 (X)</td>
<td>1.65 ($^{3}A_2$)</td>
</tr>
<tr>
<td></td>
<td>1.71 (A)</td>
<td>1.68 ($^{3}A_1$)</td>
</tr>
<tr>
<td></td>
<td>1.95 (B)</td>
<td>2.18 ($^{3}B_1$)</td>
</tr>
<tr>
<td>2.1–2.9 (C and D)</td>
<td>2.48 ($^{3}A_2$), 2.53 ($^{3}B_2$), 2.58 ($^{3}A_1$), 2.75 ($^{3}B_1$), 2.76 ($^{3}B_2$), 2.86 ($^{3}A_2$), 2.96 ($^{3}B_2$)</td>
<td></td>
</tr>
<tr>
<td>Cr$_2$O$_3^{(10)A_1g}$</td>
<td>1.69 (X)</td>
<td>1.69 ($^{3}A_1g$)b</td>
</tr>
<tr>
<td></td>
<td>2.52 (A)</td>
<td>2.41 ($^{3}B_1g$)b</td>
</tr>
<tr>
<td></td>
<td>2.99 (B)</td>
<td>3.03 ($^{3}B_1u$)b, 3.06 ($^{3}B_2u$)b</td>
</tr>
<tr>
<td></td>
<td>3.16 (C)</td>
<td>3.28 ($^{3}A_2g$)b</td>
</tr>
<tr>
<td></td>
<td>3.81 (D)</td>
<td>3.66 ($^{3}B_2g$)b, 3.67 ($^{3}B_2u$)b</td>
</tr>
<tr>
<td>Cr$_2$O$_3^{(6)A'}$</td>
<td>1.85 (X)</td>
<td>2.08 ($^{3}A'$)</td>
</tr>
<tr>
<td></td>
<td>2.36 (A)</td>
<td>2.32 ($^{3}A'$)</td>
</tr>
<tr>
<td></td>
<td>3.01 (B)</td>
<td>2.93 ($^{3}A'$)</td>
</tr>
</tbody>
</table>

aFrom Ref. 10.

bAll calculated VDEs for Cr$_2$O$_2^-$ are shifted to higher binding energies by 0.56 eV relative to that computed from DFT in Ref. 10. For example, the first computed VDE from Ref. 10 was 1.13 eV ($^{3}A_1g$).
there is a large error for the computed VDE for the 9A_2 state. However, the calculated VDEs for all other transitions seem to be in quite good agreement with the experiment, as shown in Table II. There are numerous unresolved features in the spectral region of bands C and D (Fig. 1), which are consistent with the DFT results that showed at least seven transitions in the same energy range. Therefore, we conclude that the overall agreement between the current PES data and the previous DFT calculations is reasonable, confirming the high spin ground states for both Cr$_2$O$^-$ and Cr$_2$O.

For Cr$_2$O$_2$, Tono et al. observed the first four bands including the low binding energy weak feature (X',X,A,B). However, they assigned the very weak band X' as the ground state transition, which differs from our assignment. From our experiences, such a weak signal was most likely due to a low-lying isomer, even though we were not able to alter its relative intensity because of the weak mass signals from our cluster source, allowing only a narrow parameter space to produce sufficient Cr$_2$O$_2$ clusters for the PES experiment. The DFT calculations of Tono et al. predicted again a high spin ground state ($S=9/2$) for Cr$_2$O$_2$ with rhombus D_{2h} symmetry and a large Cr–Cr distance of 2.64 Å. A low spin ($S=1/2$) isomer with similar D_{2h} symmetry but a shorter Cr–Cr distance of 2.01 Å was found to be 1.4 eV higher in energy. They also made spectral assignments based on the DFT calculations. They predicted a relatively small VDE (1.13 eV) for the ground state transition, which might be the motivation for them to assign the weak signal X' as the ground state transition. But the overall agreement between their calculated VDEs for the high spin Cr$_2$O$_2$ and their experimental data was not very satisfactory. However, we noticed that their calculated spectral pattern agrees well with our spectra, which were better resolved and contained more spectral transitions. In particular, we found that if we added a constant of 0.56 eV to their calculated VDEs, the corrected VDEs are in excellent agreement with our PES data, as shown in Table II. We tentatively take this agreement as evidence for the high spin ground state for Cr$_2$O$_2$. Clearly, more accurate calculations are warranted in light of the current data.

B. Cr$_2$O$_3$: Ferromagnetic versus antiferromagnetic isomers

The 355 nm spectrum of Cr$_2$O$_3$ by Tono et al. resolved only bands X and A. However, the relative ratio of their bands X and A is very different from our data. In our 355 nm spectrum [Fig. 3(b)], bands X and A are both very intense with band A being slightly stronger. But in their 355 nm spectrum, band X was much stronger, at least twice as intense as band A. Our temperature-dependent study (Fig. 4) suggested that the 355 nm spectrum by Kondow and coworkers might be taken at relatively high temperature conditions and contained large contributions from a low-lying isomer.

DFT calculations by Tono et al. predicted that Cr$_2$O$_3$ possesses C_s symmetry and a puckered four-membered ring structure with an extra oxygen atom terminally bonded to one Cr atom. They found that a high spin state ($S=7/2$) and a low spin state ($S=1/2$) were nearly degenerate with the low spin state only 0.04 eV higher in energy. The predicted first VDEs for both isomers were similar. Our current PES data matches the predicted VDE pattern of the high spin species (A') rather well (see Table II), and disagrees with that of the low spin species ($S=1/2$). We therefore conclude that the dominant species observed in our experiment was due to the high spin isomer with the low spin isomer contributing to the X band under high temperature conditions. The two vibrational modes observed in our PES spectrum for the ground state transition [Fig. 3(a)] were probably due to Cr–O stretching for the high frequency mode (620 cm$^{-1}$) and a bending motion for the low frequency mode (280 cm$^{-1}$).

C. Cr$_2$O$_4$, Cr$_2$O$_5$, and Cr$_2$O$_6$

There are no previous experiments on the high oxygen content oxide clusters, but there have been several theoretical calculations about the Cr$_2$O$_x$ neutral clusters ($n=4−6$). Cr$_2$O$_4$ was suggested to possess a puckered structure with a four-membered ring and two terminal O atoms each bonded to a Cr atom. This structure is similar to those for the isoelectronic W$_2$O$_4$ and Mo$_2$O$_4$ studied previously. The ground state of Cr$_2$O$_4$ was predicted to be a triplet state, also similar to W$_2$O$_4$ and Mo$_2$O$_4$. Without detailed calculations on the Cr$_2$O$_4$ anion, it is difficult to make detailed assignments of the PES features. The observed vibrational progression (630 cm$^{-1}$) in the ground state band [Fig. 5(a)] is most likely due to a Cr–O stretching mode. The congested nature of the X band suggested that there might also be low frequency bending modes excited during the detachment transition.

The structure of Cr$_2$O$_5$ was predicted to be similar to that of Cr$_2$O$_4$ with the extra O atom bonded to one Cr atom. This structure is similar to that found for W$_2$O$_5$. The ground state of Cr$_2$O$_5$ was predicted to be a singlet, also similar to W$_2$O$_5$. The observed vibrational progression (710 cm$^{-1}$) for the ground state transition [Fig. 6(a)] is likely due to a Cr–O stretching mode.

Cr$_2$O$_6$ is a stoichiometric cluster and its structure was predicted to be D_{2h} with a four-membered ring and two terminal O atoms on each Cr atom. The observed PES spectrum for Cr$_2$O$_6^-$ showed a large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap (~1.7 eV), consistent with a stable closed shell Cr$_2$O$_6$ neutral cluster. The LUMO of Cr$_2$O$_6^-$, where the extra electron resides in Cr$_2$O$_6^-$, should be a d-type orbital delocalized on the two Cr atoms, similar to that in W$_2$O$_6$. Thus the observed vibrational progression in the ground state transition [Fig. 7(a)] should be due to a Cr–O stretching mode. The vibrational progression observed in the ground state transition in Cr$_2$O$_6^-$ is also similar to that in W$_2$O$_6$, but the vibrational frequency in Cr$_2$O$_6^-$ (710 cm$^{-1}$) is much smaller than that in W$_2$O$_6$ (920 cm$^{-1}$), consistent with the fact that the W–O bond is stronger than the Cr–O bond.

It was interesting that a low-lying isomer was observed for Cr$_2$O$_6^-$ (Fig. 8). Even under the relatively cold source conditions, the low-lying isomer could not be completely
D. Overall spectral evolution of Cr$_2$O$_n^-$ (n=1–7) and sequential oxidation

As shown in our previous work on Al$_2$O$_n^-$, Ti$_2$O$_n^-$, and W$_2$O$_n^-$29,32,34, metal-based photodetachment features can be easily distinguished from O 2p-based features in O-deficient metal oxide clusters. Specifically, O 2p-based features typically appear at binding energies beyond ~5 eV, whereas features at lower binding energies are normally metal based. This is clearly also the case for the Cr$_2$O$_n^-$ series as can be seen in Fig. 9, where features at lower binding energies (<5 eV) are labeled as d (Cr 3d) and those above 5 eV are labeled as p (O 2p). The general observation is consistent with the detailed density of states (DOS) analyses for Cr$_2$O$,^{29,32,34}$ Cr$_2$O$_2^-$, and Cr$_2$O$_3^-$ from previous DFT calculations by Kon
dow and co-workers.9,10 These authors showed that the DOS within ~3 eV below the Fermi level is primarily contributed from the majority Cr 3d electrons, whereas the DOS due to the O 2p electrons are mainly located at 4–6 eV below the Fermi level. As n increases in Cr$_2$O$_n^-$, the d bands at lower binding energies diminish and the electron binding energies increase as a result of electron transfer from Cr to O. At n=6, the bulk stoichiometry is reached and all the electrons are transferred to O, resulting in a stable closed-shell Cr$_2$O$_6^-$ cluster, as shown by the large HOMO-LUMO gap observed in the 193 nm spectrum of Cr$_2$O$_6^-$. Cr$_2$O$_7^-$ is an O-rich cluster and there are no longer d-type PES features at lower binding energies. All the observed bands for Cr$_2$O$_7^-$ are O 2p based with extremely high binding energies beyond 5.5 eV (Fig. 9). The electron affinity of Cr$_2$O$_7^-$ was measured to be 5.57±0.05 eV, which is among the highest ever reported for metal oxide clusters. The simple picture of sequential oxidation is a useful concept in elucidating the electronic structure of metal oxide clusters and understanding their chemical properties.29,32,34

E. Comparison between the electronic structures of Cr$_2$O$_n$ and W$_2$O$_n^-$

Recently, we have reported a detailed study combining PES and DFT calculations on W$_2$O$_n^-$33,36,37,47, which are isoelectronic with Cr$_2$O$_n^-$. Thus, it would be interesting to compare the two systems. Jarrold and co-workers have studied several clusters of Mo$_2$O$_n^-$39,40, which are in general similar to the W$_2$O$_n^-$ systems. There are two major differences between the 3d and 5d metals, which are relevant to properties of their oxides. First, the 3d orbitals are more compact and form weaker metal-metal bonds relative to the 5d orbitals, resulting in interesting magnetic couplings in the 3d metals, whereas the 5d metals are nonmagnetic due to strong d-d bonding. The second difference between W and Cr is that W forms much stronger bonds with O than Cr does.33

Major differences between the Cr$_2$O$_n$ and W$_2$O$_n^-$ clusters occur for the very O-deficient systems from n=1–3 both structurally and electronically. Oxidation of the Cr$_2$ dimer by one to three O atoms transforms an antiferromagnetic Cr$_2$ into ferromagnetic Cr$_2$O$_n$ oxide clusters.5–10 Although the ground state of W$_2$O is a triplet state, both the ground state of W$_2$O$_2$ and W$_2$O$_3$ are singlets and nonmagnetic. The structures of the two systems are also very different. Whereas in Cr$_2$O$_n$ the first two O atoms bond to both Cr atoms in a bridging manner, in W$_2$O$_6$ the first two O atoms each bond only to one W atom because of the strong W–O bond strength.34 This leaves strong W–W bonding in the O-deficient W$_2$O$_n$ clusters, resulting in nonmagnetic or very weak magnetic systems. For n=4 and higher, the Cr$_2$O$_n$ and W$_2$O$_n$ systems become similar as the magnetic coupling in the Cr systems becomes weakened due to the loss of 3d electrons to oxygen. One interesting observation is the existence of a low-lying isomer in Cr$_2$O$_7^-$. No low-lying isomer was observed for W$_2$O$_6$ due to the overwhelming stability of the D$_{2h}$ structure, which is also reflected in the much larger HOMO-LUMO gap in W$_2$O$_6$, 2.8 eV vs 1.7 eV in Cr$_2$O$_6$.

V. CONCLUSIONS

We report a systematic photoelectron spectroscopic study on a series of dichromium oxide clusters, Cr$_2$O$_n^-$(n=1–7). Well-resolved PES spectra are obtained for each species at different photon energies. The results are compared with previous studies9,10 for n=1–3 and reassignments of major spectral features are made as a result of the better resolved spectra. The overall PES evolution exhibits a behavior of sequential oxidation with oxygen content, where low binding energy Cr 3d-based spectral features diminish in numbers and the spectra shift towards higher binding energies as a result of charge transfer from Cr to O. Clear evidence is also obtained for the existence of low-lying isomers for Cr$_2$O$_7^-$, Cr$_2$O$_5^-$, and Cr$_2$O$_3^-$. Differences between the Cr$_2$O$_n^-$ and W$_2$O$_n^-$ systems are discussed.

ACKNOWLEDGMENTS

This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy under Grant No. DE-FG02-03ER15481 (catalysis center program) and was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated for DOE by Battelle.
