Photoelectron Spectroscopy of Multiply Charged Anions

Xue-Bin Wang and Lai-Sheng Wang

Department of Physics, Washington State University, Richland, Washington 99354, and Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; email: ls.wang@pnl.gov

Abstract

Multiply charged anions (MCAs) are common in condensed phases but are challenging to study in the gas phase. An experimental technique, coupling photoelectron spectroscopy (PES) with electrospray ionization (ESI), has been developed to investigate the properties of free MCAs in the gas phase. This article reviews the principles of this technique and some initial findings about the intrinsic properties of MCAs. Examples include the observation of the repulsive Coulomb barrier that exists universally in MCAs and its effects on the dynamic stability and PES of MCAs. The solvation and solvent stabilization of MCAs have been studied in the gas phase and are also discussed. A second-generation low-temperature ESI-PES apparatus has been developed, which allows ion temperatures to be controlled from 10 to 350 K. New results from this low-temperature ESI-PES instrument are also reviewed, including doubly charged fullerene anions, inorganic metal complexes, and temperature-induced conformation changes of complex anions.

Key Words

intramolecular Coulomb repulsion, repulsive Coulomb barrier, negative electron binding energy, ion solvation, electronic structure, electrospray ionization, low-temperature ion trap
1. INTRODUCTION

Multiply charged anions (MCAs) are ubiquitous in nature and are important constituents in solutions and solids. Their existence has been generally taken for granted in the teaching of chemistry and in our understanding of materials. However, MCAs are usually rather fragile as isolated species in the gas phase owing to the strong intramolecular Coulomb repulsion among the excess charges and the missing stabilization through solvation and other electrostatic interactions, making many common textbook MCAs unstable and difficult to study (1–4). Despite a handful of mass spectrometric observations of large organic molecular MCAs (5–8), our knowledge about their properties had been limited previously. In 1990, Compton and colleagues’ (9) observation of small carbon cluster dianions, \(C_n^{2−} (n = 7–28) \), stimulated much experimental and theoretical interest in gaseous MCAs.

Early theoretical considerations of MCAs derived from interest in searching for molecular species with unusually high electron affinities (10, 11) and in understanding the electronic structure of condensed-phase species (12, 13). The groups of Cederbaum and Simons have made major theoretical advances in our understanding of MCAs. Cederbaum and coworkers investigated a series of gaseous MCAs (14–29) and proposed a construction principle for predicting gaseous MCAs based on the alkali and alkali-earth halide systems (17, 18). Simons and coworkers (4, 30–36) considered many MCAs that exist in the condensed phase and investigated their structure, bonding, and stability in the gas phase. They proposed concepts of mixed valence–dipole bound and dipole–dipole bound dianions as well (35, 36). There have also been a number of other theoretical studies on gaseous MCAs (37–45), in particular concerning small carbon clusters (15, 19, 37–40) and those relevant to condensed-phase materials (44, 45). The electron-electron repulsion and the resultant repulsive Coulomb barrier (RCB), which originates from the combination of short-range binding and long-range Coulomb repulsion, have been pointed out in several early theoretical works on multiply charged metal clusters, fullerene anions (46–48), and later theoretical models on several small MCAs (24, 25, 49, 50).

Early experimental efforts on gaseous MCAs were all made via mass spectrometric observations using a variety of ionization techniques. These include the observation of doubly charged anions of small carbon clusters (9, 51–53), fullerenes (54–58), and other species (59–62) using the ion-sputtering technique; doubly charged small organic, inorganic, and fullerene anions using electrospray ionization (ESI) (63–72); and multiply charged metal clusters and fullerene anions via sequential electron attachment in a Penning trap (73–76). Recently, several new experimental findings have been reported, including the observation of the short-lived \(\text{LiF}_3^{2−} \) species (77), a series of new composite small dianions using a sputtering source along with gas flooding (78), and the generation of doubly charged anions via a charge-transfer technique (79–83). The coordination numbers of ligand and solvent molecules required to make stable dianionic metal complexes (84–86) and hydrated clusters (63, 87) have been pursued using size-selected collision-induced dissociation techniques. The competition between ionic fragmentation versus electron detachment and the counter-ion perturbation of MCAs has been investigated by collision excitation and ab initio calculations (88–91). Lifetimes for a number of metastable dianions have been directly measured (83, 92).

Beyond the above mass spectrometric investigations, spectroscopic studies of MCAs remained a challenge. Although a number of doubly charged anions were observed using ion sputtering, laser ablation, and other collisional techniques (9, 51–61), their intensities were too weak to allow for spectroscopic investigations. Conversely, the ESI technique, pioneered by Fenn and coworkers (93, 94) as a soft-ionization method for biomolecules, could produce small gaseous MCAs directly from solutions (63–72), making it a promising technique for spectroscopic studies of these exotic species.
In 1998, we developed an experimental technique combining ESI and photoelectron spectroscopy (PES) to investigate MCAs (95–97). PES is an ideal technique to probe the intrinsic properties of MCAs in the gas phase. It provides direct measurements of the excess electron binding energies in MCAs, thus allowing one to obtain information about their stability and intramolecular Coulomb repulsion. Using this technique, systematic studies have been carried out on a variety of free MCAs, including inorganic and organic MCAs, redox species, and biologically relevant molecules (95–120). Since these initial studies, several other spectroscopic techniques based on ESI have been developed, including photodissociation (121), photodetachment (122–125), and pump-probe experiments (126). Recently we have developed a second-generation ESI-PES apparatus that can selectively trap ions under low-temperature conditions (127–129). Temperature is a critical issue in gas-phase spectroscopy and ion chemistry. The low-temperature trap is valuable to suppress thermal broadening in photoelectron spectra and to help stabilize weakly bound clusters. In addition, temperature-dependent studies are possible, which can be used to investigate entropic effects on ion conformations and isomer populations.

Several reviews and feature articles about gaseous MCAs are now available in the literature (1, 26, 91, 104, 109, 120) with emphasis on early theoretical and experimental advances, including spectroscopic investigations of MCAs at room temperature. In this review, we first give a brief summary of some of the early findings of free MCAs, such as the direct observation of the RCB (96, 97), the experimental observation of negative electron binding energies (102, 103), and the solvation and solvent stabilization of complex MCAs (106–111). Then we focus on progress made using the low-temperature ESI-PES technique. One can effectively cool anions and completely eliminate hot band transitions in PES (127). More accurate electron binding energies and detailed electronic structure information are thus obtained from cold spectra for a number of transition-metal complexes and fullerene dianions (130–134). Temperature-dependent studies on several complex systems display drastic spectral changes as a function of temperature owing to entropy-driven conformation changes, which allows energetic as well as thermodynamic information to be obtained (128, 135).

2. ROOM- AND LOW-TEMPERATURE ELECTROSPRAY ION-TRAP PHOTOELECTRON SPECTROSCOPY

The design and operation of a room-temperature ESI-PES apparatus have been described in detail elsewhere (95). A schematic view of the instrument is given in Figure 1, and important features are described below. Solutions containing the anions of interest (typically ∼1–0.1 mM in CH₃CN or 3:1 CH₃OH:H₂O) are sprayed through a syringe (∼0.04 mL h⁻¹), which is biased at a negative high voltage. Highly charged negative droplets from the syringe are fed into a desolvation capillary maintained at ∼50–100°C for desolvation. Anions that emerge from the heated capillary are guided by a radiofrequency-only quadrupole ion guide into a quadrupole ion trap, where ions are accumulated for 0.1 s before being ejected into a time-of-flight (TOF) mass spectrometer. The desired anions are mass selected by a mass gate and decelerated before being detached by a laser beam in the interaction zone of a magnetic-bottle photoelectron analyzer. The photoelectron energies are calibrated with the known spectra of I⁻, O²⁻, or ClO₂⁻ (136).

The low-temperature ESI-PES apparatus has been described previously (127–129). A key feature of the new apparatus is a temperature-controlled ion trap that is used for ion accumulation and cooling (129). The ion trap is attached to the cold head of a closed-cycle helium refrigerator, which can reach a low temperature of 5 K and can be controlled up to 350 K. The ESI source, TOF mass spectrometer, and magnetic-bottle PES analyzer are similar to the room-temperature instrument described above (95).
3. UNIQUE PROPERTIES OF FREE MULTIPLY CHARGED ANIONS

3.1. Direct Observation of the Repulsive Coulomb Barrier, Intramolecular Electron-Electron Repulsion, and Electron Tunneling Through the Repulsive Coulomb Barrier

The universal existence of the RCB, which originates from the combination of the short-range electron binding and long-range Coulomb repulsion between the outgoing detached photoelectron and the remaining anion, was directly observed in the first PES experiment on MCAs: the citrate dianion (CA$_2^-$) (Figure 2) (96). The 266-nm spectrum (Figure 2d) shows a very broad and asymmetric feature, whereas the 355-nm spectrum (Figure 2e) exhibits a relatively narrow and symmetric band. Close examination of the 266-nm spectrum revealed that it actually contains two overlapping bands, the X band observed in the 355-nm spectrum with an adiabatic detachment energy (ADE) of 1.0 eV and another band at a higher binding energy, the A band, with an ADE of 1.6 eV, as seen more clearly in Figure 2e. There was no photoelectron signal observed at 532 nm even though the photon energy was higher than the ADE of the X band. The photon-energy-dependent spectra vividly demonstrated the existence and effects of the RCB (Figure 2b). The 266-nm photon must be above the RCB of both the X and A states, so both states were observable at 266 nm. The 355-nm photon must be below the RCB of the A state, but higher than that of the X state, so only the X state was accessible at 355 nm. The 532-nm photon must then be lower than...
the RCB of both the X and A states; thus no signal could be observed at this photon energy. With the assumption that the RCBs of the X and A states are the same, its magnitude can be estimated on the basis of the above photon-energy-dependent information as $1.9 < \text{RCB} < 2.5 \text{ eV}$. The RCB effectively prevented photoelectrons with kinetic energies less than the height of the RCB from being emitted, resulting in a cutoff in the high binding energy side in the PES spectra. This cutoff has become a hallmark for PES of MCAs.

Subsequently, PES experiments were performed on a series of linear dicarboxylate dianions $-\text{O}_2\text{C-}(\text{CH}_2)_n-\text{CO}_2^-$, where n indicates the aliphatic chain length ($n = 3–10$) (97). These dianions are similar to the citrate dianion, and the two charges are localized on the terminal carboxylate groups, but now the separation between the two charges can be systematically varied. The electron binding energies of these dianions increase linearly with n, whereas the RCB decreases with n. The sum of the two is a constant and close to the electron binding energy of a singly charged carboxylate anion. Therefore, the decrease of the binding energy in the dianions, owing to the presence of the second charge (intramolecular Coulomb repulsion), is equal exactly to the RCB. Thus one can quantitatively determine the amount of intramolecular Coulomb repulsion in MCAs through measurements of the height of the RCB. A similar linear relationship between the proton affinity...
and intramolecular Coulomb repulsion is also found computationally in a series of dications, separated by organic spacer groups (137).

Analogous to the α-decay phenomenon, quantum-tunneling effects are expected to occur through the RCB when the detachment photon energies are above the binding energy of an MCA, but below the RCB. Indeed, such tunneling effects have been observed in the short-chain dicarboxylate dianions at 532 nm and have been modeled quantitatively using the WKB formalism (100). The modeled tunneling probabilities decrease rapidly for the larger dianions, consistent with experimental observation.

3.2. Observation of Negative Electron Binding Energy and Electronically Metastable Multiply Charged Anions

In MCAs, the RCB provides dynamic stability, and in principle, it can even trap unbound excess electrons from immediate autodetachment. In other words, it should be possible to observe MCAs with negative electron binding energies. Many familiar textbook MCAs (such as SO$_4^{2-}$, CO$_3^{2-}$, and PO$_4^{3-}$) have negative electron binding energies that are so high they become unstable and have never been observed in the gas phase (1, 4). One obvious target is C$_{60}^{2-}$, which is predicted theoretically to have a negative electron binding energy as high as -0.3 eV (1, 46) and has been observed in the gas phase (54, 55). However, we were not successful in producing C$_{60}^{2-}$ with our electrospray source. Other groups also failed to observe C$_{60}^{2-}$ using electrospray. The previous sightings of C$_{60}^{2-}$ were both done with laser desorption in an ion-cyclotron resonance mass spectrometer (54, 55) and via charge transfer between C$_{60}^{−}$ and Na (81). The lifetime of an isolated C$_{60}^{2−}$ has been recently measured to be only ~ 1 ms using an ion storage ring device (83).

The first successful observation of a negative electron binding energy came as a complete surprise in a quadruply charged anion, 3,4',4',4''-tetrasulfonate copper phthalocyanine, [CuPc(SO$_3$)$_4$]$^{4−}$ (Figure 3) (102). This MCA is produced abundantly by the electrospray of a sodium salt solution. The 193-nm spectrum reveals a weak feature (X) at negative binding energies with the threshold energy of -0.9 eV and two broad features (A and B) at higher binding energies. At 266 nm, the negative–electron binding energy feature becomes dominant, the higher–binding energy feature B disappears, and only a tail of the feature A is observed owing to the RCB. The observation of the negative–binding energy feature is remarkable, indicating that the photoelectron kinetic energy corresponding to this feature is 7.32 eV at 193 nm (i.e., 0.9 eV higher than the photon energy). The PES spectra of [CuPc(SO$_3$)$_3$]$^{3−}$ are similar to that of the neutral parent CuPc molecule, except the neutral CuPc has a much higher electron binding energy with a threshold ionization potential of 6.3 eV. The similarity between the PES spectra of the charged species and that of the parent CuPc suggests that detachment occurs from molecular orbitals mainly of CuPc character in the anions. A simple electrostatic estimation indicates that the four negative charges would create a 7.2-eV negative potential on the central Cu atom (i.e., an electron localized on Cu would experience a Coulomb repulsion of 7.2 eV), giving rise to a -0.9-eV (6.3–7.2 eV) binding energy, in excellent agreement with experimental observation. We observed no measurable ion loss within the period of 400 s that we could store the ions. The long lifetime of this metastable tetraanion in the gas phase is also surprising and can be attributed to the large barrier height (estimated to be 3.5 eV) and the large size of the molecule. The RCB can be viewed as an electrostatic corral in this semiplanar molecule, trapping the negatively bound electron inside. Kappes' group (125) confirmed this observation and also measured the lifetime of the metastable anions more accurately. Negative electron binding energies have also been observed in two small dianions, PtCl$_4^{2−}$ and PtBr$_4^{2−}$, with the adiabatic electron binding energies of -0.25 and -0.04 eV, respectively (103), as well as in a large triply charged anion with an -0.66-eV electron binding energy recently (138).
4. STABILIZATION AND MICROSOLVATION OF COMPLEX MULTIPLY CHARGED ANIONS IN THE GAS PHASE

4.1. Solvation and Solvent Stabilization of Electronically Unstable Multiply Charged Anions: From Gas-Phase Clusters to Bulk Solutions

Many familiar and common inorganic MCAs (such as SO$_4^{2-}$, CO$_3^{2-}$, and PO$_4^{3-}$) are not electronically stable in the gas phase because of the tremendous intramolecular Coulomb repulsions. These anions exist in the condensed phase and are stabilized by solvation in solutions or counter-ions in solids (1, 4, 139). It would be of fundamental chemical and physical significance to understand how MCAs are stabilized in the gas phase by solvents or counter-ions. We have carried out a series of experiments to address the stabilization and solvation of SO$_4^{2-}$ and C$_2$O$_4^{2-}$ by water in the gas phase (106–108). Three water molecules are the minimum required to stabilize SO$_4^{2-}$ and C$_2$O$_4^{2-}$ in the gas phase, and the solute dianions are solvated in the center of the water cluster. Photoelectron spectra of small clusters were characteristic of the respective solutes, but beyond the first solvation shell, photoemission features from the solutes were diminished, and a new feature from the ionization of water emerged, analogous to bulk aqueous solutions. A smooth transition from gas-phase clusters to the behavior of electrolyte solutions was clearly revealed, and the large solvated clusters can be used as molecular models to investigate the photophysics and chemistry of aqueous electrolyte solutions. Ab initio calculations for small hydrated sulfate and oxalate clusters showed that the water molecules tend to solvate symmetrically around SO$_4^{2-}$ and C$_2$O$_4^{2-}$ (106, 108). Subsequent theoretical calculations and molecular dynamic simulations confirm the behavior of the interior solvation of sulfate in the solvated clusters (140–143).
4.2. Solvent-Mediated Folding of Doubly Charged Anions, and Bulk Versus Interfacial Aqueous Solvation

Linear dicarboxylate dianions $\text{O}_2\text{C}-(\text{CH}_2)_n\text{CO}_2^-$ have two distinct charged groups (CO_2^-) linked by a flexible aliphatic chain, and the hydrated clusters represent a simple model system to study the hydrophilic and hydrophobic interactions. We investigated the microsolvation of these dianions ($n = 2, 4, 6, 12$) by PES and molecular dynamics simulations one solvent molecule at a time for up to 20 water molecules (110, 111). The two charge centers are solvated separately and alternately. As the solvent number increases, the competition between the Coulomb repulsion and water-water interactions leads to a conformation change, in which the linear dianions become bent so that the two solvation centers merge to enhance the water-water cooperative hydrogen-bonding interactions (Figure 4). For the solvated suberate dianion $\text{O}_2\text{C}-(\text{CH}_2)_6\text{CO}_2^-\text{(H}_2\text{O})_m$, the conformation change occurs at $m = 16$. The competition between hydrophilic interactions of the charged carboxylate groups and hydrophobic interactions of the aliphatic chain leads to a transition from bulk aqueous solvation of small dicarboxylates ($n < 4$) to surface solvation for the larger dicarboxylates. These size-dependent solvation behaviors may have implications for heterogeneous chemistry at aqueous surfaces and for atmospheric chemistry.

Molecular dynamics simulations reveal that the cluster temperature also plays an important role in the conformation change owing to the entropic effect (110). For example, simulations indicate that at 150 K the suberate conformation change occurs with 16 water molecules, but at 230 K the conformation change occurs with 23 water molecules. This is because the linear configuration is more flexible and has a larger entropic contribution to its free energy compared to the folded conformation at finite temperatures. As discussed in Section 5, we have carried out a temperature-dependent study on the solvation and conformation change of the suberate dianion using a low-temperature apparatus in the range of 18 to 300 K. Dramatic spectral changes as a function of temperature are observed, allowing quantitative evaluations of the entropic and enthalpic effects on the folding transition.

Figure 4
Snapshots from simulations of the suberate dianion with (a) one, (b) two, (c) 15, and (d) 18 water molecules (folded structure). Figure reprinted from Reference 110.
5. LOW-TEMPERATURE PHOTOELECTRON SPECTROSCOPY OF MULTIPLY CHARGED ANIONS AND TEMPERATURE-DEPENDENT STUDIES

The ability to control ion temperatures is critical for gas-phase spectroscopy and has been a challenge in chemical physics. Recently a second-generation ESI-PES instrument was developed to control anion temperatures for PES studies (127–129). Ion cooling is accomplished in a Paul trap via collisions with a background gas, and ion temperatures can be tuned from 10 to 350 K. Cold anions are demonstrated by the observation of H₂ condensation on trapped ions (129). Vibrational cooling for both simple and complex anions is observed, yielding considerably better resolved photoelectron spectra (127, 133, 134).

Figure 5 shows the 355-nm PES spectrum of ClO₂⁻ at 70 K compared with that at 300 K. Even at the moderate low temperature of 70 K, the hot band in the PES spectrum is completely eliminated, resulting in a much better resolved spectrum, in which the bending mode (weak peaks between the intense stretching vibrational peaks) is clearly resolved. Even though the spectral resolution is not high in the current magnetic-bottle instrument, the spectral information in the low-temperature data of ClO₂⁻ is similar to that obtained in a previous high-resolution PES spectrum (136). More importantly, temperature-dependent PES studies are now possible and have been carried out on a number of complex systems, revealing drastic spectral changes due to conformation changes at low temperatures (128, 135).

5.1. Temperature-Dependent Photoelectron Spectroscopy of Hydrated Suberate Dianions: Observation of Entropic Effects

Figure 6 compares the PES spectra of \(^{−}\)O₂C-(CH₂)₆-CO₂⁻(H₂O)ₙ (n = 13–17) at three trapping temperatures. As discussed above, the room-temperature hydrated clusters show a continuous increase of electron binding energies until n = 16, at which the PES spectrum exhibits a sudden shift to a lower electron binding energy, signaling a linear-to-folded transition. Because of entropic effects, it is expected that the number of water molecules required to induce the folding transition should be smaller at lower temperatures. Indeed, at 82 K the PES spectrum of n = 14 displays...
Figure 6
Comparison of the photoelectron spectra of hydrated suberate \cdotO$_2$C-(CH$_2$)$_6$-CO$_2$$^-$($H_2$O)$_n$ ($n = 13$–17) at 193 nm (6.424 eV) at 82 K (gold) and 18 K (blue) with those at room temperature (red).
a lower binding energy feature, indicating the onset of folding. The 82-K spectrum of \(n = 15 \) shows a major shift to lower binding energies, implying a folded conformation at low temperatures. The threshold electron binding energy of \(n = 14 \) at 82 K decreases to 3.7 eV relative to 4.3 eV at 300 K, indicating a 0.6-eV increase in the intramolecular Coulomb repulsion between the two carboxylates in the folded conformation. A systematic temperature-dependent study was performed on the \(n = 14 \) hydrated clusters with a temperature gradient of 5 K from 150 K down to 18 K. The ratio of the folded-over linear conformations can be precisely controlled as a function of temperature, yielding the enthalpy and entropy differences between the two conformations. A folding barrier was also observed at very low temperatures, resulting in kinetic trapping of the linear conformation (135).

5.2. Probing the Electronic Structure of Multiply Charged Transition-Metal Complexes

Although many inorganic metal complexes have been studied extensively in the condensed phase for many decades, gas-phase studies of these species are limited and are desirable for obtaining information about their intrinsic molecular properties without the complications of the condensed-phase environments. The ESI-PES apparatus is ideally suitable to study these species in the gas phase and to obtain electronic structure information for such metal complexes as long as they are long-lived in the gas phase. A series of transition-metal halide complexes (101, 103, 105) and biologically relevant molecules such as cubane [4Fe-4S] cluster dianions (112–119) have been studied. This work has stimulated two recent theoretical studies on the PtX6\(^{2-}\) halide complexes (144, 145), revealing the important interplay of electron correlation and relativistic effects.

The low-temperature apparatus is ideally suited to study both singly and multiply charged metal complex anions, owing to the elimination of vibrational hot bands. The low-temperature spectra can yield more detailed electronic structure information, which would otherwise be smeared out at room temperature. A low-temperature PES and theoretical study on Pt(CN)\(_n\)^{2-} (\(n = 4, 6 \)) has been reported (132), and a detailed PES study was performed on the electronic structures of transition-metal bis(dithiolene) centers [M(mnt)_2]^\(^{2-}\) [M = Fe–Zn, Ni, Pd, Pt; mnt = 1,2-S\(_2\)C\(_2\)(CN)\(_2\)] (130, 131), which exhibit interesting redox, magnetic, and optical properties in the condensed phase. Figure 7 shows the 70-K PES spectra of [M(mnt)_2]^\(^{2-}\) (M = Fe–Zn) at different photon energies (131). Significant changes are observed for the [M(mnt)_2]^\(^{2-}\) dianions owing to stabilization of the metal 3d levels from Fe to Zn and the transition from square-planar to tetrahedral coordination about the metal center, \(D_{2h} \) (Fe–Ni) → \(D_2 \) (Cu) → \(D_{4d} \) (Zn). The combined data illustrate the subtle interplay between metal- and ligand-based redox chemistry in these species and demonstrate changes in their electronic structures with the metal center, oxidation state, and coordination geometry.

5.3. Low-Temperature Photoelectron Spectroscopy of C\(_{70}\)^{2-} and Higher Fullerene Dianions

Although C\(_{60}\)^{2-} and C\(_{70}\)^{2-} are among the first dianions observed in the gas phase by mass spectrometry (54, 55), their gaseous spectroscopic study remained elusive. The stabilities of the fullerene dianions are expected to increase with the fullerene cage size. Indeed higher fullerene dianions, C\(_{n}\)^{2-} (\(n = 76, 78, 84 \)), were readily generated by ESI (69, 70, 123, 124). Their PES spectra were first recorded at relatively low resolution at room temperature (123, 124). The high internal energy distributions inherent in these relatively large molecular dianions resulted in long thermal tails in the PES spectra, which complicated the determination of the ADEs and generally led to
Figure 7

70-K photoelectron spectra measured at 193 nm (left column), 266 nm (middle column) and 355 nm (right column) for (a) [Fe(mnt)$_2$]$^{2-}$, (b) [Co(mnt)$_2$]$^{2-}$, (c) [Ni(mnt)$_2$]$^{2-}$, (d) [Cu(mnt)$_2$]$^{2-}$, and (e) [Zn(mnt)$_2$]$^{2-}$. The inset in the 266-nm spectrum of [Fe(mnt)$_2$]$^{2-}$ is an expansion of the region 0–0.8 eV to illustrate features X and A more clearly. Features marked with an asterisk in the 266- and 355-nm spectrum were not observed at 193 nm and are assumed to result from autodetachment or multielectron processes. Figure reprinted from Reference 131.
Figure 8

70-K photoelectron spectra of C_{70}^{2-} at 266 nm (4.661 eV) and higher fullerene dianions, C_n^{2-} ($n = 76, 78, 84$), at 193 nm (6.424 eV). Note the adiabatic detachment energy is near zero for C_{70}^{2-} and increases with cage size.
lower ADE values. For example, the extrapolated ADE of C_{70}^{2-} based on the reported ADEs of C_{78}^{2-}, C_{78}^{2-}, and C_{84}^{2-} was ~0.28 eV, which was lower than the true ADE of C_{70}^{2-} by 0.3 eV (see below).

The C_{70}^{2-} dianion was produced, using the low-temperature ESI-PES apparatus, and vibrationally cold PES spectra were obtained for this elusive species (Figure 8) (133). The dianion C_{70}^{2-} is the smallest stable fullerene dianion with a positive, albeit small, ADE of 0.02 eV. Cold PES spectra for C_n^{2-} and C_n^- (n = 76, 78, 84) were also obtained (Figure 8) (134). Significant improvements were observed in the cold spectra, which show well-resolved electronic structures, particularly at the threshold regions, at which sharp 0–0 transitions are resolved for all higher fullerene dianions (127). The ADEs measured from the 0–0 peaks are significantly higher than the previous estimations by ~0.3 eV. As shown in Figure 9 for C_{78}^{2-} and C_{84}^{2-}, the cold spectra allow isomer-specific information to be obtained, which is not possible at room temperature.

![Figure 9](image-url)

Figure 9

70-K photoelectron spectra of C_{78}^{2-} (left panels) and C_{84}^{2-} (right panels) at 532-nm (upper rows) and 355-nm (lower rows) photon energies. Note that the three isomers of C_{78} (C_{2v}, D_{3}, and C_{2v}') and two isomers of C_{84} (D_{2}, D_{24}) are clearly distinguished owing to the vibrational cooling.
6. PERSPECTIVE AND CONCLUSIONS

This review presents an overview of recent experimental advances on the application of photodetachment PES for free and solvated MCAs. These results demonstrate the power and versatility of the photodetachment technique to probe the properties of free MCAs, and in general solution-phase chemistry and species in the gas phase. Although the research field has rapidly developed during the past decade, much remains to be done. One can expect that with the development of new experimental techniques, many other properties about gaseous MCAs can be studied. One example is the recently developed low-temperature ion trap, which has demonstrated the potential to allow isolated as well as solvated MCAs to be probed under well-defined temperatures by either PES (127–135) or infrared action spectroscopy (146, 147). Dramatic infrared or photoelectron spectral improvements have been achieved for cold anions, yielding detailed electronic and geometric structure information. Furthermore, temperature-dependent studies are now possible, which can be used to investigate entropic effects on ion conformations and isomer populations.

SUMMARY POINTS

1. Photodetachment PES combined with ESI provides a general and sensitive spectroscopic tool to probe the stability and electronic structures of free MCAs, as well as any solution-phase anions in the gas phase. The existence of the RCB was directly observed in PES, and its magnitude can be estimated by photon-dependent PES.

2. The RCB has a profound influence on properties of MCAs and their photoelectron spectra. It provides dynamic stability for MCAs and can even trap unbound electrons. Negative electron binding energies have been observed in several MCAs.

3. The solvation and solvent stabilization of small MCAs such as SO$_4^{2-}$ and C$_2$O$_4^{2-}$ have been studied, which each require a minimum of three water molecules to be stabilized in the gas phase. Water molecules are found to nucleate around the SO$_4^{2-}$ and C$_2$O$_4^{2-}$ solutes, giving rise to bulk instead of surface solvation.

4. Solvent-mediated, temperature-dependent folding of -O$_2$C-(CH$_2$)$_6$-CO$_2$- (suberate) has been studied. For small solvated clusters, both -CO$_2$- groups are separately solvated in an alternating pattern, giving rise to two isolated solvation centers bridged by the -(CH$_2$)$_6$- hydrophobic chain in an overall linear conformation. Upon the addition of more water, the suberate dianion folds because the merging of the two water droplets provides additional cooperative hydrogen-bonding interactions that overcome the resulting increase in Coulomb repulsion. The folding transition is observed to occur at 16 water molecules at room temperature and is decreased to 14 water molecules below 120 K owing to the entropic effect. Systematic temperature-dependent studies have yielded quantitative thermodynamic information between the linear and folded conformations.

5. The electronic structures and stability of metal complexes and fullerene dianions, C$_n^{2-}$ ($n = 70, 76, 78, 84$), have been investigated at low temperatures. Drastic PES spectral improvements have been achieved for the vibrationally cold anions, yielding rich electronic structure and more accurate energetic information.
6. A new low-temperature PES instrument has been developed, showing promise to
eliminate thermal broadening and help stabilize weakly bound species. Temperature-
dependent studies are made possible for weakly bound molecular and solvated clusters,
allowing thermodynamic information to be obtained. It is anticipated that the temper-
ature control capability using a simple Paul trap will significantly expand the potentials
to study solution-phase species in the gas phase.

DISCLOSURE STATEMENT
The authors are not aware of any biases that might be perceived as affecting the objectivity of this
review.

ACKNOWLEDGMENT
The work described in this article was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, Chemical Science Division, and the National Science Foundation and was
performed at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific
user facility sponsored by DOE's Office of Biological and Environmental Research and located at
Pacific Northwest National Laboratory, which is operated for DOE by Battelle.

LITERATURE CITED
66
Rev. 94:2291–318
3. Freeman GR, March NH. 1996. Chemistry of multiply charged negative molecular ions and clusters in
the gas phase: terrestrial and in intense galactic magnetic fields. J. Phys. Chem. 100:4331–38
5. Dougherty RC. 1969. Negative-ion mass spectrum of benzo[cd]-pyrene-6-one: evidence for a doubly
Soc. 98:6480–83
7. Maas WPM, Nibbering NMM. 1989. Formation of doubly charged negative ions in the gas phase by
collisionally-induced "ion pair" formation from singly charged negative ions. Int. J. Mass Spectrom. Ion
Process. 88:257–66
Phys. 89:7363–66
higher electron affinity of chemical compounds. J. Phys. Chem. 94:2256–59
12. Ewig CS, Van Wazer JR. 1990. Ab initio studies of molecular structures and energetics. 4. Hexacoordi-
nated NF6{−} and CF6{2−} anions. J. Am. Chem. Soc. 112:109–14
65. Blades AT, Ho Y, Kebarle P. 1996. Free energies of hydration in the gas phase of some phosphate singly and doubly charged anions: (HO)₂PO₄⁻ (orthophosphate), (HO)O₃POPO₂(OH)²⁻ (diphosphate), ribose 5-phosphate, adenosine 5'-phosphate, and adenosine 5'-diphosphate. J. Phys. Chem. 100:2443–46
66. Arthur TB, Peschke M, Kebarle P. 2003. Hydration of cyclic oxocarbon dianions, such as c-C5O52−, in the gas phase: charge reduction of hydrates by electron detachment or proton transfer energy barriers for electron detachment and electron transfer. Int. J. Mass Spectrom. 228:1017–34
95. Detailed description of the principle and construction of the first electrospray PES apparatus for MCAs.

96. First PES study of a free MCA and direct observation of the RCB.

97. Determined the relationship between the intramolecular Coulomb repulsion and the RCB in MCAs.

100. Demonstrated the validity of using the tunneling formalism in a-decay for understanding electron tunneling in MCAs.

102. First observation of negative electron binding energy in a MCA.

107. Study on the solvation and solvent stabilization of two unstable textbook dianions, SO\textsubscript{4}2- and C\textsubscript{2}O\textsubscript{4}2-, and observation of bulk behavior in solvated clusters, SO\textsubscript{4}2-\cdot(nH\textsubscript{2}O)\textsubscript{n} and C\textsubscript{2}O\textsubscript{4}2-\cdot(\textsubscript{H\textsubscript{2}O})\textsubscript{n}.

