Electronic instability of isolated SO_4^{2-} and its solvation stabilization

Xue-Bin Wang
Department of Physics, Washington State University, 2710 University Drive, Richland, Washington 99352
and W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, MS K8-88, P.O. Box, Richland, Washington 99352

John B. Nicholas
Genentech, Inc., One DNA Way, South San Francisco, California 94080
Lai-Sheng Wang a)
Department of Physics, Washington State University, 2710 University Drive, Richland, Washington 99352
and W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, MS K8-88, P.O. Box, Richland, Washington 99352

(Received 6 October 2000; accepted 27 October 2000)

Despite its ubiquity in nature, SO_4^{-} as an isolated dianion has never been detected because of its electronic instability as a result of the two negative charges. This study shows how the first few waters solvate and stabilize an isolated SO_4^{2-}, molecule-by-molecule, using photodetachment spectroscopy and theoretical calculations. We find that the minimum number of water required to stabilize a free SO_4^{2-} is three. The first four waters bind tightly to SO_4^{2-}, each forming two H-bonds with SO_4^{2-} without inter-water H-bonding. The charges of the dianion are stabilized sufficiently that additional waters form only single H-bonds with SO_4^{2-} and that inter-water H-bonding is observed starting at $n = 5$. © 2000 American Institute of Physics. [S0021-9606(00)01748-7]

Sulfate (SO_4^{2-}) is an important inorganic dianion commonly found in solutions, solids, atmospheric aerosols, and in extraterrestrial bodies. Due to its ubiquity in nature, the existence of SO_4^{-} as a chemical structural unit has been taken for granted. However, claims of experimental observation of SO_4^{2-} in the gas phase have long been controversial. A definite answer has been reached only theoretically—because of the strong Coulomb repulsion between the two excess electrons, a free SO_4^{2-} was found to be unstable by ~ 1.6 eV with respect to autodetachment (to $\text{SO}_4^{-} + e^{-}$). On the other hand, SO_4^{2-} is stabilized through solvation in solution and counterions in solids. Indeed, only solvated SO_4^{2-} has been observed as a gaseous species. An interesting question concerns how an isolated SO_4^{2-} is solvated and stabilized. Answers to this question will provide molecular-level information about the solvation of a complex dianion, as well as help understand its properties in electrolyte solutions, on surfaces, and at interfaces. In this communication, we report the first spectroscopic characterization of water-solvated SO_4^{2-} and determine its electronic stability and the nature of the solvated complexes, using photodetachment spectroscopy and theoretical calculations.

Gas-phase cluster spectroscopy combined with theoretical calculations has become a powerful means of obtaining atomic-level information about ion solvation and structural metastability. Solvated halide anions have attracted particular attention. Beyond the halide anions, the most complicated hydrated anions that have been experimentally characterized are diatomic species, CN^{-} and O_2^{-}. Dynamic processes such as the “cage” effect and cluster relaxation have been revealed using ultrafast spectroscopy. Investigation of hydrated sulfate clusters is challenging experimentally. The most common means of generating solvated anions, i.e., electron attachment in a supersonic free jet, cannot generate SO_4^{2-}(H$_2$O)$_n$ clusters, even though it is successful in making singly charged solvated anions. This is because: (1) isolated SO_4^{2-} is electronically unstable by 1.6 eV against autodetachment (to $\text{SO}_4^{-} + e^{-}$) and (2) the dianion nature of the clusters would require successive electron attachment, which is difficult due to the strong Coulomb repulsion between the second attaching electron and a singly charged anion. The electrospray ionization technique has been shown to be a powerful soft ionization technique to transport ionic species from the solution to the gas phase. It can produce not only gaseous multiply-charged anions, but also solvated species. We have recently developed an experimental technique, using electrospray and photodetachment photoelectron spectroscopy, to investigate the properties of free multiply charged anions, as well as solution phase chemistry in the gas phase. This technique is uniquely and ideally suitable to probe the electronic stability and microsolvation of SO_4^{2-}.

In our mass spectra of SO_4^{2-}(H$_2$O)$_n$ clusters measured using an ion-trap time-of-flight technique, the smallest cluster observed was $n = 3$. We could not detect any clusters with one or two H$_2$O, consistent with a previous experiment, in which the smallest cluster observed was $n = 4$. The mass spectrum indicated that SO_4^{2-} needs at least three H$_2$O to be stabilized. This was quantified in the photodetachment experiments and confirmed by our theoretical calculations. Figure 1 displays a set of photoelectron spectra for SO_4^{2-}(H$_2$O)$_n$
decreasing mass signals. Several observations can be made when the signal-to-noise ratios became poor at large

from the hydrated clusters, i.e., there is no proton transfer, \(\text{HSO}_4^- \rightarrow \text{H}_{2}\text{O}_{n-1}^- \cdot \text{OH}^- \). This result is consistent with the fact that \(\text{HSO}_4^- \) is a stronger acid than \(\text{H}_{2}\text{O} \).

From the previously calculated electron binding energy of \(-1.6 \) eV for free \(\text{SO}_4^{2-} \), our measured electron binding energy of \(1.0 \) eV for \(n=4 \) implies that the first four \(\text{H}_{2}\text{O} \) stabilize \(\text{SO}_4^{2-} \) by \(-2.6 \) eV, giving an average stabilization of \(-0.65 \) eV per \(\text{H}_{2}\text{O} \). The measured increase of electron binding energy from \(n=3 \) to 4 is \(-0.6 \) eV, suggesting that each of the first four waters has approximately the same stabilizing effect on \(\text{SO}_4^{2-} \). From the \(0.4 \) eV binding energy measured currently for \(\text{SO}_4^{2-} \left(\text{H}_{2}\text{O}_3 \right) \), we extrapolate that one or two \(\text{H}_{2}\text{O} \) are not sufficient to stabilize \(\text{SO}_4^{2-} \), each is still electronically unstable by roughly \(-0.9 \) and \(-0.2 \) eV, respectively. The photodetachment results thus provide the most conclusive evidence that three is the minimum number of \(\text{H}_{2}\text{O} \) needed to stabilize a free \(\text{SO}_4^{2-} \). The first four waters seem to have the strongest stabilizing effect. As shown in Table I and Fig. 2(b), the incremental stabilization drops to \(-0.4 \) eV for \(n=5 \) and 6. For the larger clusters, the stepwise stabilization becomes even smaller, decreasing smoothly: \(-0.3 \) eV for \(n=7 \) and 8; \(-0.25 \) eV for \(n=9 \) and 10, and \(-0.2 \) eV for \(n>10 \).

We further performed theoretical calculations to determine the minimum energy structures of \(\text{SO}_4^{2-} \left(\text{H}_{2}\text{O}_n \right) \) and to obtain a more quantitative picture about how \(\text{SO}_4^{2-} \) is solvated by \(\text{H}_{2}\text{O} \). Figure 3 shows the lowest energy optimized structures for the hydrated clusters with \(n=1-6 \). The calculated adiabatic (ADE) and vertical (VDE) electron binding energies corresponding to these structures are in excellent agreement with the experimental data (Table I and Fig. 2), lending considerable credence for the validity of these structures. The theoretical results confirmed indeed \(\text{SO}_4^{2-} \left(\text{H}_{2}\text{O} \right)_n \) and \(\text{SO}_4^{2-} \left(\text{H}_{2}\text{O}_2 \right) \) are electronically unstable; the calculated ADEs for them are \(-0.91 \) and \(-0.22 \) eV, respectively, in excellent agreement with our extrapolated ADEs discussed above. The calculations further confirmed that \(\text{SO}_4^{2-} \) exists as a distinct structural unit with minimal perturbations in all the solvated clusters; the S–O bond lengths and angles differ only slightly from the ideal tetrahedral structure (calculated S–O bond lengths are 1.52 Å in isolated \(\text{SO}_4^{2-} \)). Consistent with this interpretation, there is little delocalization of charge from the \(\text{SO}_4 \) species to the surrounding waters; the calculated charge on \(\text{SO}_4 \) ranges from \(-1.92 |e| \) to \(-1.90 |e| \) in the complex with six waters.

A clear picture of stepwise solvation and stabilization of \(\text{SO}_4^{2-} \) emerges from the structures shown in Fig. 3. The first water strongly binds to \(\text{SO}_4^{2-} \) (calculated binding energy \(-27.7 \) kcal/mol), forming two strong H-bonds. The second, third, and fourth \(\text{H}_{2}\text{O} \) also form two strong H-bonds each with \(\text{SO}_4^{2-} \). Thus in \(\text{SO}_4^{2-} \left(\text{H}_{2}\text{O}_4 \right) \) each oxygen on \(\text{SO}_4^{2-} \) is bonded to two \(\text{H}_{2}\text{O} \), forming a symmetric solvated cluster (C2h). The incremental binding energies for the second, third, and fourth \(\text{H}_{2}\text{O} \) are 26.4, 24.9, and 23.5 kcal/mol, respectively. We expected that the fifth \(\text{H}_{2}\text{O} \) would continue the same pattern and double H-bond to \(\text{SO}_4^{2-} \). However, the lowest energy structure (Fig. 3) instead contains a water–water H-bond, with one of the waters forming only a single H-bond with \(\text{SO}_4^{2-} \). The predicted binding energy of the fifth water is 22.4 kcal/mol. Finally, we similarly expected that \(\text{SO}_4^{2-} \left(\text{H}_{2}\text{O}_6 \right) \) would be tetrahedral, with all six \(\text{H}_{2}\text{O} \) double H-bonded to \(\text{SO}_4^{2-} \). However, the lowest energy structure of \(\text{SO}_4^{2-} \left(\text{H}_{2}\text{O}_6 \right) \) (Fig. 3) has only three \(\text{H}_{2}\text{O} \) double H-bonded to

![FIG. 1. Photoelectron spectra of \(\text{SO}_4^{2-} \left(\text{H}_{2}\text{O}_n \right) \), \(n=4-10 \) at 193 nm (6.424 eV) (Ref. 22). The 193 nm spectrum of \(\text{Na}^+ \left(\text{SO}_4^{2-} \right) \) is also shown for comparison (Ref. 21).](image-url)
Interestingly, the remaining three H$_2$O form a cyclic H$_2$O trimer, with each H$_2$O donating one H to H$_2$O and one to SO$_4^{2-}$, and thus also acting as a single H-bond receptor. The calculated binding energy for the sixth H$_2$O is 21.8 kcal/mol. The stepwise solvation mechanism observed here for free SO$_4^{2-}$ is interesting. We see a delicate balance between H$_2$O–SO$_4^{2-}$ interactions and H$_2$O–H$_2$O interactions. When the solvent number is between one to four H$_2$O, the two

TABLE I. Experimental and theoretical adiabatic (ADE) and vertical (VDE) electron binding energies for SO$_4^{2-}$(H$_2$O)$_n$ in eV.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.60^d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.91</td>
<td>0.69</td>
<td>0.85</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.4 ± 0.2</td>
<td>0.32</td>
<td>0.54</td>
<td>0.8 \pm 0.2</td>
<td>0.9 \pm 0.1</td>
<td>0.54</td>
<td>0.85</td>
<td>0.55</td>
</tr>
<tr>
<td>3</td>
<td>1.00 ± 0.10</td>
<td>0.90</td>
<td>0.60 ± 0.05</td>
<td>0.58</td>
<td>1.33 ± 0.10</td>
<td>1.47</td>
<td>0.53 ± 0.10</td>
<td>0.62</td>
</tr>
<tr>
<td>4</td>
<td>1.38 ± 0.10</td>
<td>1.27</td>
<td>0.38 ± 0.05</td>
<td>0.37</td>
<td>1.80 ± 0.10</td>
<td>1.82</td>
<td>0.47 ± 0.10</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>1.75 ± 0.10</td>
<td>1.69</td>
<td>0.37 ± 0.05</td>
<td>0.42</td>
<td>2.18 ± 0.10</td>
<td>2.18</td>
<td>0.38 ± 0.10</td>
<td>0.36</td>
</tr>
<tr>
<td>6</td>
<td>2.10 ± 0.10</td>
<td>0.35</td>
<td>0.35 ± 0.05</td>
<td>0.36</td>
<td>2.54 ± 0.10</td>
<td>2.54</td>
<td>0.36 ± 0.10</td>
<td>0.36</td>
</tr>
<tr>
<td>7</td>
<td>2.43 ± 0.10</td>
<td>0.33</td>
<td>0.33 ± 0.05</td>
<td>0.36</td>
<td>2.84 ± 0.10</td>
<td>2.84</td>
<td>0.36 ± 0.10</td>
<td>0.36</td>
</tr>
<tr>
<td>8</td>
<td>2.69 ± 0.10</td>
<td>0.26</td>
<td>0.26 ± 0.05</td>
<td>0.26</td>
<td>3.08 ± 0.10</td>
<td>3.08</td>
<td>0.26 ± 0.10</td>
<td>0.26</td>
</tr>
<tr>
<td>9</td>
<td>2.93 ± 0.10</td>
<td>0.24</td>
<td>0.24 ± 0.05</td>
<td>0.24</td>
<td>3.33 ± 0.10</td>
<td>3.33</td>
<td>0.24 ± 0.10</td>
<td>0.24</td>
</tr>
<tr>
<td>10</td>
<td>3.12 ± 0.10</td>
<td>0.19</td>
<td>0.19 ± 0.05</td>
<td>0.19</td>
<td>3.60 ± 0.10</td>
<td>3.60</td>
<td>0.19 ± 0.10</td>
<td>0.19</td>
</tr>
<tr>
<td>11</td>
<td>3.31 ± 0.10</td>
<td>0.19</td>
<td>0.19 ± 0.05</td>
<td>0.19</td>
<td>3.80 ± 0.10</td>
<td>3.80</td>
<td>0.19 ± 0.10</td>
<td>0.19</td>
</tr>
<tr>
<td>12</td>
<td>3.49 ± 0.10</td>
<td>0.18</td>
<td>0.18 ± 0.05</td>
<td>0.18</td>
<td>4.01 ± 0.10</td>
<td>4.01</td>
<td>0.18 ± 0.10</td>
<td>0.18</td>
</tr>
<tr>
<td>13</td>
<td>3.75 ± 0.10</td>
<td>0.17</td>
<td>0.17 ± 0.05</td>
<td>0.17</td>
<td>4.22 ± 0.10</td>
<td>4.22</td>
<td>0.17 ± 0.10</td>
<td>0.17</td>
</tr>
</tbody>
</table>

aThe VDEs were measured from the peak maximum of the first photodetachment feature in each spectrum. The ADEs were estimated by drawing a straight line at the leading edge of the first photodetachment feature and then adding a constant to the intersect with the binding energy axis to take into account the resolution and the thermal effect.

bADE(n)–ADE($n-1$).

cVDE(n)–VDE($n-1$).

dReference 3.
negative charges on SO_4^{2-} attract water strongly enough that two H-bonds are formed with each water. As the solvent number increases ($n > 4$), the negative charges on SO_4^{2-} are sufficiently screened that single H-bonds, plus $\text{H}_2\text{O}–\text{H}_2\text{O}$ interactions, are favored. These hydrated clusters may provide good model systems to elucidate the molecular mechanisms of SO_4^{2-} solvation in bulk solutions.25–27

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Science Division, Alfred P. Sloan Foundation, and The Petroleum Research Fund, administered by the American Chemical Society. The work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated for DOE by Battelle.

9 L. Lehr, M. T. Zanni, C. Frischkorn, R. Weinkauf, and D. M. Neumark, Science \textbf{284}, 635 (1999).

11 C. K. Wong, J. D. Lobo, and M. Okumura, abstract in 55th Int. Sym. Mol. Spectros. June 12–16, 2000, Columbus, OH.

22 The $\text{SO}_4^{2-}(\text{H}_2\text{O})_n$ clusters were produced by spraying a 10^{-3} M tetra-n-butyl ammonium sulfate solution in a water/methanol mixed solvent at neutral pH. The anions produced from the electrospray were accumulated and stored in a quadrupole ion-trap for 0.1 s at a pressure of 10^{-4} Torr before being analyzed by a time-of-flight mass spectrometer. For photodetection experiment, a mass-selected $\text{SO}_4^{2-}(\text{H}_2\text{O})_n$ anion was decelerated and intercepted by a Nd:YAG laser beam (355 and 266 nm) or an excimer laser beam (193 and 157 nm). Photoemitted electrons were analyzed by a magnetic-bottle time-of-flight photoelectron spectrometer. Photoelectron time-of-flight spectra were measured and converted to kinetic energy spectra, calibrated by the known spectra of I^- and O^-. The electron binding energy spectra were obtained by subtracting the kinetic energy spectra from the detachment photon energies.

23 The final geometries of all complexes were optimized using density functional theory, the B3LYP exchange-correlation functional [A. D. Becke, J. Chem. Phys. \textbf{98}, 5648 (1993)] and the TZVP+ basis set. The TZVP+ basis set was derived from the DFT-optimized TZVP basis set [N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem. \textbf{70}, 560 (1992)] by addition of a diffuse s function to each H (exponent $=0.0457$), and diffuse s and p functions to O and S (exponents 0.0814 and 0.0481 on O, 0.0509 and 0.0342 on S). The exponents of the diffuse functions were obtained from an even-tempered extrapolation of the outer exponents of the original basis set. Frequency calculations were done to verify that the optimized geometries were stable points on the potential energy surface. We then obtained more accurate energies from single-point B3LYP calculations using the aug-cc-pVTZ basis set [R. A. Kendall, T. H. Dunning, Jr., and R. A. Harrison, J. Chem. Phys. \textbf{96}, 6796 (1992)] on all oxygens and sulfur, the cc-pVTZ basis set on all hydrogens [T. H. Dunning, Jr., J. Chem. Phys. \textbf{90}, 1077 (1989)], and the B3LYP/ TZVP+ geometries. The aug-cc-pVTZ basis set adds a diffuse s, p, d, and f function on both O and S. The single-point energies were converged to 10^{-8} a.u. to insure accuracy. In order to locate the lowest diatomic effect, \sim10 initial geometries of each complex were first optimized at low levels of theory (typically RHF/3–21+G*). Many of the initial geometries optimized to the same final structure, generally giving \sim3 geometries for use as input to the higher level optimizations. The geometries of the singly charged anions were optimized using the corresponding diatomic geometries as starting points. We used Gaussian98 [M. J. Frisch \textit{et al.}, Gaussian 98, Revision A: Gaussian, Inc., Pittsburgh, PA (1998)] for all of the computations.

24 We define the theoretical vertical electron binding energy as the difference in total energy between the optimized diatomic complex and the singly charged anion calculated at the diatomic geometry. We define the adiabatic electron binding energy as the difference in energy between the optimized geometries of the diatomic and singly-charged anion complexes.

