The ground state of UF₆⁻ has been extensively studied theoretically. The electronic structure of the neutral UF₅ anion in the 5f² UF₅⁻ ground state and the next higher 5f orbital is only about 0.33 eV. In contrast to UF₅, there is little experimental and theoretical work on the UF₅ anion. It would be interesting to see how adding an electron to the system will alter the electronic structure of the neutral UF₅ in the 5f² UF₅⁻ system.

The overlapping vibronic manifolds from more than one electronic transition made it difficult to assign higher electronic states. Under the C₄ᵥ symmetry, the sevenfold degenerate 5f orbitals split into five sets of molecular orbitals (MOs), two of which are doubly degenerate. Both ligand field theory and ab initio theoretical calculations predicted the energy order of these MOs as: b₂ < e < b₁ < a₁ < e. Thus, the ground state of UF₅ is a ₂B₂ ground state and the highest 5f orbital at about 14 647 cm⁻¹. The overlapping vibronic manifolds from more than one electronic transition made it difficult to assign higher electronic states. For example, the energy gap between the ground state and the next higher f orbital is only about 0.33 eV. In contrast to UF₅, there is little experimental and theoretical work on the UF₅⁻ anion. It would be interesting to see how adding an electron to the system will alter the electronic structure of the neutral UF₅ in the 5f² UF₅⁻ system.

I. INTRODUCTION

Uranium hexafluoride (UF₆) has attracted much attention because of its importance in uranium enrichment for nuclear technology. The U atom has its highest oxidation state of VI in UF₆ with a valence electron configuration of 5f⁰6d⁰, where the 5f and 6d orbitals can participate in back bonding with the ligands of ungerade and gerade symmetries, respectively. Single crystal neutron diffraction studies showed that UF₆ has an octahedral symmetry (Oh) with a mean U–F bond length of 1.995 ± 0.002 Å at 293 K, and there is clear evidence of strong participation of the 5f orbitals in the chemical bonding. Furthermore, the short U–F bond has been suggested to have multiple-bond characters with U forming six σ bonds while being a good π acceptor. All six fundamental modes of vibration for the highly symmetric Oh UF₆ are known from Raman and infrared spectroscopy. The electronic structure of UF₆ has also been well studied with absorption spectroscopy, electron impact spectroscopy, and photoelectron spectroscopy (PES). To understand these available experimental data, computational actinide chemistry has experienced a steady growth in developing better relativistic quantum chemistry methods.

The ground states of UF₅⁻ and UF₆⁻ are found to have C₄ᵥ symmetry, but with a large U–F bond length change. The ground state of UF₅⁻ is a triplet state (B₂) with the two 5f electrons occupying a 5f₁-based 8a₁ highest occupied molecular orbital (HOMO) and the 5fₓᵧz-based 2b₂ HOMO-1 orbital. The detachment cross section from the 5fₓᵧz orbital is observed to be extremely small and the detachment transition from the 2b₂ orbital is more than ten times weaker than that from the 8a₁ orbital at the photon energies available. The UF₆⁻ anion is found to be octahedral, similar to neutral UF₆ with the extra electron occupying the 5fₓᵧz-based a₂u orbital. Surprisingly, no photoelectron spectrum could be observed for UF₆⁻ due to the extremely low detachment cross section from the 5fₓᵧz-based HOMO of UF₆⁻. © 2012 American Institute of Physics.

Photoelectron spectroscopy and theoretical studies of UF₅⁻ and UF₆⁻

Phuong Diem Dau, Jing Su, Hong-Tao Liu, Dao-Ling Huang, Fan Wei, Jun Li, and Lai-Sheng Wang

1Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
2Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China

(Received 25 March 2012; accepted 27 April 2012; published online 17 May 2012)
Despite the importance of UF₆ and UF₅, their electron affinities (EAs) are not accurately known. Charge transfer experiments between UF₅ and alkali atoms led to the estimation of the EAs of UF₅ and UF₆ to be about 4.0 ± 0.4 eV and ≥ 5.1 eV, respectively. Charge transfer reactions between UF₆⁻ and BF₃ yielded an EA of about 4.9 ± 0.5 eV for UF₆. Ion equilibrium studies suggested similar EA values, about 3.7 ± 0.2 eV for UF₅ and 5.1 ± 0.2 eV for UF₆.

Photoelectron spectroscopy is a powerful experimental technique to study the electronic structures of molecules. In principle, anion PES can provide accurate EA values for the corresponding neutrals, if the 0→0 transition in the PES spectra can be observed from vibrationally resolved data. Besides, anion PES can provide rich information about the ground and excited states of the neutral UF₆ species. In the current paper, we report a combined PES and theoretical study on UF₅⁻ and UF₆⁻ in the gas phase. Vibrationally resolved PES spectra have been observed for UF₅⁻, yielding an EA of 3.82 ± 0.05 eV for UF₅ on the bases of Franck-Condon simulations. Strong anion mass signals were observed for UF₆⁻, but no photoelectron signals could be observed due to the extremely low detachment cross sections from the fₓyz-based HOMO of UF₆⁻. Density functional theory (DFT) and ab initio wave function theory (WFT) calculations were performed on UF₅⁻ and UF₆⁻ to understand their electronic structures.

II. EXPERIMENTAL AND THEORETICAL METHODS

A. Electrospray and photoelectron spectroscopy

The experiment was carried out using a magnetic-bottle PES apparatus coupled with an electrospray ionization (ESI) source, details of which has been described previously. The only modification for the current study was the shortening of the electron flight tube of the magnetic-bottle PES analyzer from 4.0 to 2.5 m. As shown below, the shorter flight tube does not affect the electron energy resolution significantly. To produce the UF₅⁻ species, we used an ESI solution prepared by adding a small amount of AgF to a 1 mM solution of depleted 238U(SO₄)₂ in acetonitrile. Anions from the ESI source were transferred to a Paul trap at room temperature by a radio frequency quadrupole ion guide. After being accumulated for 0.1 s in the Paul trap, the anions were pulsed into the extraction zone of a time-of-flight mass spectrometer. Three anionic species UO₂F₃⁻, UF₅⁻, and UF₆⁻ were observed from our ESI source (Fig. 1). The UO₂F₃⁻ anion was formed due to air contamination during the electrospray. Hence, nitrogen gas was used to purge the ESI zone to minimize the air contamination and enhance the ion signals of UF₅⁻ and UF₆⁻. The anions of interest were selected by a mass gate and decelerated before being intercepted by a laser beam in the detachment region of the magnetic-bottle PES analyzer. An F₂ excimer laser (157 nm, 7.866 eV), the highest photon energy available to us, was used to probe a wide binding energy range. To enhance the spectral resolution, we performed PES experiments at lower photon energies, 213 nm (5.821 eV), 245 nm (5.061 eV), 275 nm (4.508 eV) from a dye laser and 266 nm (4.661 eV) from a Nd:YAG laser. The PES experiment was calibrated by the known spectra of Au⁺ and 1-. The Au⁻ anion was produced by electrospray of a pyridine/methanol solution of PPh₃AuCl and NaSCH₃. The electron kinetic energy resolution of the current magnetic-bottle photoelectron analyzer with the shortened electron flight tube was about 3%, i.e., 30 meV for 1 eV electrons.

B. Theoretical and computational methods

The theoretical studies were carried out using both DFT and ab initio WFT methods. In the DFT calculations, we used the generalized gradient approximation with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional implemented in the Amsterdam Density Functional (ADF 2010.02) program. The Slater basis sets with the quality of triple-ζ plus two polarization functions (TZ2P) (Ref. 75) were used, with the frozen core approximation applied to the inner shells [1s²-5d¹⁰] (Refs. 61, 76, and 77) for U and [1s²] for F. The zero-order-regular approximation (ZORA) was employed to account for the scalar relativistic (SR) and SO coupling effects. Geometry optimizations were performed at the SR-ZORA level, followed by single-point energy calculations with inclusion of the SO effects via the SO-ZORA approach, where the non-collinear relativistic method was used.

In the ab initio WFT calculations, we used the coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] method, as implemented in the MOLPRO 2008.1 program. Geometry optimizations were performed at the level of CCSD(T) with SR effects included via the relativistic effective core potentials (RECP). Single-point CCSD(T) energies of the ground and excited states of the neutrals were calculated at the optimized geometries of their anionic structures, which accurately generated state-specific SR energies for all the states. Stuttgart energy-consistent RECP, i.e., ECP60MBW, was applied for U, where the 1s²-4f⁴ core was chosen. We used the aug-cc-PVDZ basis set for F (Ref. 82) and the ECP60MBW-SEG basis set for U.

In addition to the Franck-Condon factor (FCF) analyses to be presented in Sec. IV, we also computed the vibrational progression in the UF₅⁻ PES spectra using our own code that was written based on the Franck-Condon formulas of Fonger and Struck, which have been successfully applied to the luminescence spectra simulation of uranyl and neptunyl compounds. In this approach, vibrational frequency changes from the ground state to the
excited states upon electronic transition were taken into account, but anharmonicities and Duschinsky rotations, which were expected to be small for the current case due to the identical point-group symmetry in the anion and neutral molecules, were neglected. In this paper, we only considered the in-phase symmetric stretching vibration of \(\text{U}^-\text{F} \), which accounts for the observed vibrational progression, and neglected the coupling with other vibrational modes. Ground-state geometry optimizations and frequency calculations of \(\text{UF}_5^- \) were also performed with DFT/PBE using GAUSSIAN 03 (G03) with the same basis sets as in the CCSD(T) calculations above.\(^87\) The geometrical parameters from the CCSD(T) calculations, the vibrational frequency, and normal mode coordinates from DFT/PBE calculations by G03 were used in the simulation. Additionally, hot bands due to the \(\text{U}^-\text{F} \) symmetric stretching mode of \(\text{UF}_5^- \) were included using a vibrational temperature of 350 K, as deduced from the FCF simulation of the experimental data.

III. EXPERIMENTAL RESULTS

A. \(\text{UF}_6^- \)

Under our ESI conditions, we observed three major anions at \(m/z = 327, 333, \) and 352, corresponding to \(\text{UO}_2\text{F}_3^- \), \(\text{UF}_5^- \), and \(\text{UF}_6^- \), respectively, as shown in Fig. 1. The relative ion intensity for \(\text{UF}_6^- \) was much stronger compared to those of \(\text{UO}_2\text{F}_3^- \) and \(\text{UF}_5^- \). The focus of the current study was on \(\text{UF}_6^- \) and \(\text{UF}_5^- \). However, we were unable to detect photoelectrons from \(\text{UF}_6^- \) at any detachment photon energies including the highest photon energy available: 7.866 eV (157 nm). This was surprising because all previous studies suggested that the EA of \(\text{UF}_6 \) should be less than 6 eV. As shown below, our theoretical calculations also predicted that the EA of \(\text{UF}_6 \) is less than 6 eV. The current observation was attributed to the extremely low detachment cross section of the extra electron in \(\text{UF}_6^- \), which occupies a \(\text{U} f_{\text{xyz}} \)-based MO (vide infra).

B. \(\text{UF}_5^- \)

We were only able to obtain the PES spectra of \(\text{UF}_5^- \), as shown in Fig. 2 at four different photon energies: 275 nm, 266 nm, 245 nm, and 213 nm. We also measured the spectrum of \(\text{UF}_5^- \) at 157 nm, which is not presented in Fig. 1 because no additional features were observed in comparison to the 213 nm spectrum. At 213 nm (Fig. 2(d)), a very broad detachment band was observed, covering a spectral range of more than 1 eV from about 3.8 to 5.2 eV. The broadband suggested that there must be a large geometry change between the ground state of \(\text{UF}_5^- \) and that of its neutral. At 245 nm (Fig. 2(c)), vibrational fine features were resolved, but the high binding energy side appeared to be cut off due to the lower photon energy. The most intense vibrational feature in the 245 nm spectrum yielded a vertical detachment energy (VDE) of 4.40 eV for \(\text{UF}_5^- \). Figure 2(b) shows a better vibrationally resolved spectrum at 266 nm, but the higher binding energy side was clearly cut off. In order to resolve the lower binding energy side better, we also measured the spectrum at 275 nm (Fig. 2(a)). Hot band transitions due to vibrationally excited \(\text{UF}_5^- \) anions were observed. The observed vibrational fine features consist of one single vibrational progression with an average spacing estimated as 650 ± 50 cm\(^{-1}\). However, we were not able to determine the adiabatic detachment energy (ADE) because we could not definitively identify the 0–0 transition on the low binding energy part of the spectrum due to the long vibrational progression and the limited spectral resolution. ADE is an important quantity, since it corresponds to the EA of neutral \(\text{UF}_5 \). The observed vibrational structures indicated that only one vibrational mode was active during the detachment transition and this mode was most likely the totally symmetric \(\text{U}–\text{F} \) stretching mode. This observation suggested that a FCF simulation was possible, which would yield a more reliable ADE.
IV. FRANCK-CONDON FACTOR ANALYSES

In order to determine the EA of UF5 from the PES spectra of UF5\(^{-}\), we performed a FCF simulation using the PESCAL program.\(^8\) A single active vibrational mode with a frequency of 650 cm\(^{-1}\) was considered on the basis of the resolved vibrational progression in the PES spectra (Fig. 2). The 245 nm spectrum was used to compare with the FCF simulation because it had a relatively good resolution and did not have the severe cutoff on the high binding energy side suffered in the 266 nm spectrum (Fig. 2(b)). For the UF5\(^{-}\) initial state, a harmonic frequency of 534 cm\(^{-1}\) was used from the DFT/PBE calculation (see below) because the hot band transitions were not well resolved in the PES spectra and could not be used to obtain the vibrational frequency for the anion. With the fixed vibrational frequencies for the initial and final states, we used the PESCAL program to obtain the best fit with the experimental spectrum, as shown in Fig. 3, by varying the ADE, the vibrational temperature of the anion, and the displacement of the normal mode. The FCF fitting yielded an ADE of 3.82 ± 0.05 eV, a vibrational temperature for the anion of 350 K, and a normal model displacement of 0.901 Å (g/mol)\(^{1/2}\) from the anion ground state to that of the neutral, corresponding to the totally symmetric U–F stretching mode of the neutral UF5 ground state. It is reasonable to fix some values when fitting a partially resolved spectrum,\(^89\) as is the case in the current study. The simulated spectrum in Fig. 3 was obtained by convoluting all calculated FCFs with 80 meV width Gaussian functions. This width (full width at half maximum) was considerably broader than the instrumental resolution, suggesting that other low frequency modes might also be active during the photodetachment transition. The obtained ADE and the measured VDE of UF5\(^{-}\) are given in Table I and compared with theoretical calculations (\textit{vide infra}).

V. THEORETICAL RESULTS

A. UF5\(^{-}\)

Table I shows the calculated ADEs and VDEs of UF5\(^{-}\) compared with the experimental results. Theoretical calculations showed that the ground state of UF5\(^{-}\) is a triplet state (\(^3B_2\)) with two unpaired electrons, occupying the 5f-based \(2b_2\) and \(8a_1\) MOs, respectively (Figs. 4 and 5). The open-shell ground state of UF5\(^{-}\) is expected to result in two close-lying detachment transitions. The ADEs and VDEs of these two detachment transitions from SR-CCSD(T) calculations and DFT/PBE are given in Table I, as ADE1, ADE2, VDE1, and VDE2. As we have observed before,\(^92\) the DFT/PBE values are smaller by almost 1 eV when compared with the CCSD(T) results. We note that the additional SO coupling corrections at the DFT/PBE level do not change much the SR values.

Details of the optimized geometrical parameters of UF5\(^{-}\) are summarized in Table II. The point group symmetries of the optimized ground state of UF5\(^{-}\) and UF5, as well as that of the lowest excited state of UF5, are all found to be C\(_4\)\(_v\). For UF5\(^{-}\), the axial and equatorial U–F bond lengths are found to be almost identical at both DFT/PBE and CCSD(T) levels. Furthermore, the two levels of theory give very similar U–F bond lengths for UF5\(^{-}\), about 2.13 Å. Both DFT/PBE and CCSD(T) calculations of UF5\(^{-}\) also give similar \(\angle\text{F}_\text{eq}\text{U}\text{F}\) bond angles. The DFT/PBE and CCSD(T) calculations also give consistent geometrical parameters for the ground and excited state of UF5. The neutral UF5 shows a significantly shorter U–F bond in both its ground and excited states, about

\begin{table}[h]
\centering
\caption{The adiabatic (ADE) and vertical (VDE) detachment energies for UF6\(^{-}\) and UF5\(^{-}\) calculated at different levels of theory and comparison with experimental values for UF5\(^{-}\). All energies are in eV.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
 & \textbf{UF6\(^{-}\)} & & \textbf{UF5\(^{-}\)} & & \\
 & \textbf{DFT/PBE} & \textbf{CCSD(T)} & & \textbf{DFT/PBE} & \textbf{CCSD(T)} & \textbf{Exp.} \\
\hline
\textbf{ADE\(_1\)} & 4.06 & 4.07 & 5.20 & 2.63 & 2.63 & 3.48 & 3.82 ± 0.05^a \\
\textbf{ADE\(_2\)} & 4.33 & 4.46 & 5.72 & 3.13 & 3.14 & 4.20 & 4.40 ± 0.05 \\
\textbf{VDE\(_1\)} & 9.05^c & & & 4.58 & & 4.78^b \\
\textbf{VDE\(_2\)} & & & & & & & \\
\hline
\end{tabular}
\end{table}

^a The average vibrational spacing for the detachment band is 650 ± 50 cm\(^{-1}\).

^b Estimated on the basis of the CCSD(T) results corrected by adding the difference between the experimental and CCSD(T) ADE\(_1\) and VDE\(_1\).

^c From Ref. 47.
0.1 Å shorter than that in the UF$_5^-$ anion. This is consistent with the experimental observation of an extensive vibrational progression in the totally symmetric vibrational mode in the PES spectra (Fig. 2). On the other hand, the DFT/PBE and CCSD(T) methods give slightly different \angleF$_{ax}$UF$_{eq}$ bond angles for the two neutral states of UF$_5$. The DFT/PBE method seems to overestimate the bond angle change, whereas the CCST(D) method shows that the \angleF$_{ax}$UF$_{eq}$ bond angle of the two neutral states is very similar to that of the anion. We calculated the vibrational frequencies of the totally symmetric mode ν_s(U–F) at DFT/PBE and obtained 534 and 639 cm$^{-1}$ for the ground states of UF$_5^-$ and UF$_5$, respectively, and 626 cm$^{-1}$ for the lowest excited state of UF$_5$, as given in Table I. We used the calculated vibrational frequency for the UF$_5^-$ anion in our FCF simulations in Sec. IV. The calculated symmetric frequency for the neutral ground state of UF$_5$ is in excellent agreement with the experimental observation (650 cm$^{-1}$).

The energy levels of the valence MOs of UF$_5^-$ are presented in Fig. 4 and the iso-contour surfaces of these orbitals are depicted in Fig. 5. The two singly occupied molecular orbitals are the 8a$_1$ and 2b$_2$ orbitals: the 8a$_1$ MO is mainly of U 5f$_3^z$ character with minor F 2p contributions while the 2b$_2$ MO is the nonbonding U 5f$_{xyz}$ orbital.

B. Franck-Condon factor calculations to access the contribution of the second detachment channel of UF$_5^-$

According to our CCSD(T) calculations, a second detachment transition occurs at about 0.5 eV above the ground state of UF$_5$, corresponding to the removal of the 2b$_2$ electron with an ADE$_2$ of 3.95 eV (Table I). However, because of the large geometry changes between the ground state of UF$_5^-$ and the two neutral final states, the corresponding detachment bands are expected to be broad and overlap with each other in the experimental PES spectra shown in Fig. 2. However, there is little evidence of the presence of an overlapping second detachment channel in the experimental PES data (Fig. 2). This observation suggests that the contribution or the relative intensity of the second detachment band must be very small or negligible. To access the possible contribution by this detachment channel, we carried out FCF calculations using the relevant experimental parameters obtained above, i.e., the vibrational temperature and ADE

TABLE II. Optimized geometrical parameters of UF$_6^-$ and UF$_5^-$ and their neutrals at both DFT and CCSD(T) levels of theory.

<table>
<thead>
<tr>
<th></th>
<th>DFT/PBEa</th>
<th></th>
<th>CCSD(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U–F$_{ax}$ (Å)</td>
<td>U–F$_{eq}$ (Å)</td>
<td>\angleF${ax}$UF${eq}$ (°)</td>
</tr>
<tr>
<td>UF$_5^-$</td>
<td>2.130</td>
<td>2.127</td>
<td>102.3</td>
</tr>
<tr>
<td>UF$_5$ (2B$_2^e$)c</td>
<td>2.034</td>
<td>2.037</td>
<td>95.8</td>
</tr>
<tr>
<td>UF$_5$ (2A$_1^e$)d</td>
<td>2.054</td>
<td>2.041</td>
<td>99.4</td>
</tr>
<tr>
<td>UF$_6^-$</td>
<td>2.096</td>
<td>2.024</td>
<td></td>
</tr>
</tbody>
</table>

aAs implemented in ADF 2010.2.

bThe totally symmetric U–F stretching vibrational frequency.

cThe ground state.

dThe lowest excited state.
of UF5− and the vibrational frequency of UF5. Details of these calculations are described in Sec. II B. For ADE2, we scaled the calculated ADE2 at the CCSD(T) level using the difference between the calculated and experimental ADE1. Table III lists all the parameters used for the FCF calculations. Because the calculated v1(U−F) frequency from DFT/PBE in G03 was systematically smaller, it was scaled according to the experimental value of 650 cm−1 for the ground state of UF5 in the FCF calculations. The ground-state normal mode displacement ΔQ [in unit of Å (g/mol)1/2] of UF5 relative to UF5− was calculated to be 0.909, and 0.863 for the lowest excitation state. The calculated normal mode displacement is in good agreement with that obtained from the FCF simulation (0.901 Å (g/mol)1/2) using PESCAL (Sec. IV). We used the 213 nm spectrum (Fig. 2(d)) to compare with the calculated FCFs because at this photon energy there was no cutoff in the high binding energy side. Fig. 4(a) shows a comparison of the FCF calculation (a 80 meV width Gaussian was convoluted to each calculated FCF) with the 213 nm PES spectrum, using only the ground-state transitions. We see that the agreement between the calculated spectrum and the experimental data is actually quite good, except that the high binding energy side displays a slight deviation, suggesting that there might be a very small contribution by the second detachment channel. Fig. 4(b) shows a comparison, where 9% of the first excited state was included, giving a slightly better agreement between the simulated spectrum and the experiment. These results suggest that the contribution by the first excited state is extremely small, i.e., the cross section for the second detachment channel of UF5− from the 2b2 MO was indeed very small, and it is almost negligible.

C. UF5−

We also carried out calculations for UF5− and its neutral. The optimized geometrical parameters of UF6 and UF5− are also given in Table II. Both the anion and the neutral UF6 are found to have O6h symmetry, in agreement with previous studies.51 Again, both DFT/PBE and CCSD(T) calculations give similar U−F bond lengths for UF6− and UF6. The average U−F bond lengths for UF6 and UF6− from CCSD(T) and PBE calculations are 2.10 Å and 2.02 Å, respectively. The ADE and VDEs calculated for UF5− are also given in Table I. At the CCSD(T) level, we obtained an ADE of 5.2 eV for UF6− and VDE1 of 5.72 eV, corresponding to the detachment of the extra electron in the anion. Similar to the case of UF5− and UF5, we again observed that the DFT/PBE values are significantly lower than the CCSD(T) values. We also computed the VDE2 as 9.05 eV from a SO-coupled second-order perturbation theory based on a restricted active space self-consistent field reference wave function (RASPT2-SO).47,48

VI. DISCUSSION

A. UF5−: The detachment transition to the ground state of UF5

In UF5−, U is in its oxidation state IV with a 5f2 configuration. As shown in Fig. 4, the seven 5f atomic orbitals split into 2b2, 8a1, 4b1, 7e, and 8e under C4v symmetry. The two 5f electrons occupy the 2b2 and 8a1 MOs, giving rise to a triplet (5B2) ground state for UF5−. As shown in Fig. 5, the 8a1 HOMO is mainly of U 5fz character with minor contributions from the F 2p orbital of the ligands. As the 8a1 HOMO is weakly antibonding, electron detachment from the 8a1 orbital of UF5− enhances bonding in neutral UF5 (2B2), resulting in the shortened U−F bonds and slightly reduced 〈FNFq〉 bond angles (Table II). These theoretical predictions are consistent with the extensive vibrational progression observed in the PES spectra of UF5− (Fig. 2). The change in the U−F bond lengths leads to the extensive vibrational progression in the totally symmetric U−F stretching mode, whereas the slight bond angle change is in agreement with the broad line width, which suggests excitation of low frequency bending modes accompanying the stretching mode. The U−F bond lengths and 〈FNFq〉 bond angles obtained from the current CCSD(T) calculations are in good agreement with the most recent theoretical study of UF5 by Batista and co-workers at the DFT/B3LYP level.41 Our current study also shows that the geometric parameters at DFT/PBE and CCSD(T) levels are similar (Table II).

However, the DFT/PBE method severely underestimates the electron detachment energies by more than 1 eV relative to the experiment, as shown in Table I.32 Our CCSD(T) value for ADE1 of 3.48 eV is in good agreement with the observed ADE for the ground-state transition of 3.82 eV, although it is still lower by 0.34 eV in comparison to the experimental value due to the relatively small atomic basis sets and the negligence of the SO effects. The experimental ADE of 3.82 eV also represents the EA of UF5. The current EA value is consistent with the estimate by Compton using charge transfer (4 ± 0.4 eV)49 or the 3.7 ± 0.2 eV value from ion equilibrium studies.57,58

The observed totally symmetric stretching vibrational frequency of 650 ± 50 cm−1 for the ground state of UF5 is consistent with the v1 mode (646 cm−1) of UF5 reported
by Jones and Ekberg. Previous calculations suggested that the gas phase electronic spectrum of UF₅ might be complicated due to the presence of multiple electronic states and the fluxional character between D₃h and C₄ᵥ. However, our observation of one dominating U−F stretching mode rules out the D₃h symmetry for UF₅. Our calculated frequency at the DFT/PBE level for the ν₁(U−F) mode of 639 cm⁻¹ is in good agreement with the experimental value. The smaller U−F stretching frequency calculated for UF₅− is also consistent with the weakening of the U−F bonding in the anion.

B. UF₅ᵢ⁻: The detachment transition to the excited state of UF₅

As mentioned above, electron detachment from the 2b₂ HOMO-1 should result in the excited state of UF₅ (¹A₁g). The 2b₂ MO is almost of pure U 5fₓ𝑦𝑧 character, as shown in Fig. 5. Our CCSD(T) calculations gave an ADE₂ of 3.95 eV and VDE₂ of 4.58 eV for this detachment channel (Table I). The geometrical parameters of the excited state are very similar to that of the UF₅ ground state. Thus, the detachment band was also expected to be as broad as that of the ground-state transition. The second detachment band would be completely overlapped with that of the ground-state band. However, the experimental PES spectra gave little hint about the presence of an overlapping band, suggesting that the detachment cross section from the 2b₂ MO is much smaller so that the contribution of this detachment channel to the PES spectra is negligibly small relative to that of the ground state. This conjecture was supported by our FCF calculations shown in Fig. 6, which indicate that the second detachment channel contributes no more than 9% to the observed PES spectrum at 213 nm (Fig. 6(b)). This suggests that the detachment cross section from the 5fₓ𝑦𝑧-based 2b₂ MO is at least ten times weaker than that from the 5f₁ₙ₋₁-based 8a₁ orbital.

It is well known that ionization cross sections are strongly dependent on photon energies and the angular momenta of the orbitals, from which the electron is ionized. The photon energy dependence of the ionization cross section of the U 5f orbital is not known. However, photoionization studies of Au showed that the ionization cross section of its 4f orbital is negligible near the ionization threshold and exhibits a very slow rise as a function of photon energy above the threshold. Significant ionization cross section was observed only about 40 eV above the threshold. This behavior was understood on the basis of the high angular momentum of the 4f orbitals. In the current case, while the 5fₓ𝑦𝑧 (m_l = 2) and 5fₓ³ (m_l = 0) orbitals have the same high angular momentum (l = 3), they have very different projections in the z axis, which may be related to their very different detachment cross sections.

C. The electron affinity of UF₆ and the low detachment cross section of UF₆⁻

Our CCSD(T) calculations yielded an ADE of 5.20 eV for UF₆⁻ (Table I). If we use the discrepancy (0.34 eV) between the CCSD(T) ADE and the experimental value for UF₅−, we estimate that the real ADE of UF₆⁻ would be around 5.5 eV, which is in line with the previous estimates of the EA of UF₆. Strong and stable ion signals for UF₆⁻ using our ESI source. Surprisingly, we were unable to observe any measurable photoelectron signals at 213 nm (5.821 eV) or our highest photon energy at 157 nm (7.866 eV).

The obvious question is why we could not observe any measurable photoelectrons for UF₆⁻ while the photon energies used were expected to be higher than its electron binding energy? The answer lies at the nature of the LUMO of UF₆, in which the extra electron resides in UF₆−. The ground state of UF₆ is closed shell (¹A₁g) with a F-2p ligand-based valence electron configuration of e₆̅t₂g₆̅t₁u₆̅a₁g₆̅t₃₂u₆̅t₃g₆̅t₁u₆̅L₆. The LUMO of UF₆ is an 5fₙ-based a₉u orbital, where the extra electron resides in UF₆−. The a₉u orbital is the nonbonding 5fₓᵧ𝑧 orbital, essentially the same as the 2b₂ orbital in UF₅− (Fig. 5). As seen above, the 2b₂ orbital of UF₅− has an extremely low detachment cross section at the laser photon energies available to us. Hence, we attribute the failure to observe photoelectrons from UF₆− to the extremely low detachment cross section of the 5fₓᵧ𝑧-based a₂u orbital.

VII. CONCLUSIONS

We report the observation of gaseous UF₅− and UF₆− anions using electrospray ionization and vibrationally resolved photoelectron spectra of UF₅− at different photon energies. The electron affinity of UF₅ is determined to be 3.82
± 0.05 eV using Franck-Condon factor simulations of the observed photoelectron spectra. A vibrational frequency of 650 ± 50 cm⁻¹ is measured from the vibrationally resolved PES spectra, corresponding to the totally symmetric U−F stretching mode. DFT and ab initio calculations are used to optimize the structures of UF₅⁻, UF₄⁻, and their neutrals. Both UF₅⁻ and UF₄ are found to have Cs₅ symmetry, but the U−F bond lengths in neutral UF₅ are significantly shortened. The ground state of UF₅⁻ is found to be triplet with the two unpaired electrons residing in the 5fₓz⁻based 8a₁ HOMO and the 5fₓz⁻based 2b₂ HOMO-1. The detachment cross section of UF₅⁻ due to the extremely low detachment cross section of the 5fₓz⁻based 2aₘ HOMO in UF₅⁻, as observed for the 5fₓz⁻based HOMO-1 in UF₅⁻.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry Program under Grant No. DE-FG02-11ER16261 (P. D. Dau, H.-T. Liu, and L.-S. Wang). The theoretical work was supported by NKBRSF (Grant No. 2011CB932400) and NSF of China (NSFC) (Grant Nos. 20933003, 11079006, 91026003) of China (J. Li). The calculations were performed using the DeepComp 7000 computer at the Supercomputer Center of the Computer Network Information Center, Chinese Academy of Sciences, and the Shanghai Supercomputing Center. A portion of the calculations was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, USA.

74 See http://www.theochem.uni-stuttgart.de/pseudopotential for more information about the pseudopotential used for U.