\(\pi-\) and \(\sigma\)-Coordinated Al in AlC\(_2^-\) and AlC\(_3^-\). A Combined Photoelectron Spectroscopy and ab Initio Study

Alexander I. Boldyrev,\(^*\),\(^1,\) Jack Simons,\(^*\),\(^5\) Xi Li,\(^6\) and Lai-Sheng Wang\(^*\),\(^8\)

Contribution from the Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, Department of Physics, Washington State University, Richland, Washington 99352, and W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, MS K8-88, P.O. Box 999, Richland, Washington 99352

Received June 21, 1999

Abstract: Vibrationally resolved photoelectron spectroscopy is combined with ab initio calculations to investigate the structure and chemical bonding in AlC\(_2^-\) and AlC\(_3^-\). AlC\(_2^-\) was found to have a \(C_2v\) structure whereas AlC\(_3^-\) was found to be almost linear, thus establishing \(\pi\)-coordination of Al in AlC\(_2^-\) and \(\sigma\)-coordination in AlC\(_3^-\). The adiabatic electron affinities of AlC\(_2\) and AlC\(_3\) were measured to be 2.65(3) and 2.50(6) eV, respectively. The calculated vertical (2.87 eV) and adiabatic (2.60 eV) electron detachment energies for AlC\(_2^-\) agree well with the 2.73(0.03) and 2.65(0.03) eV experimental values, respectively. The calculated (2.86 eV) and experimental (2.64 \pm 0.04 eV) vertical detachment energies for AlC\(_3^-\) were also in good agreement. The calculated vibrational frequency for AlC\(_2\) and vertical detachment energies for other higher energy features in both AlC\(_2^-\) and AlC\(_3^-\) were also in good agreement with the experimental measurements. The combined experimental and theoretical effort allows us to elucidate the structures of AlC\(_2^-\) and AlC\(_3^-\) and the nature of their chemical bonding.

Introduction

The –CC– group is known to bond to a variety of atoms and functional groups, such as H, F, and CH\(_3\), using \(\sigma\)-coordination to produce linear X=C=CC=N X neutral and X=C=CC=N X anion structures. However, when X is an electropositive atom such as Li, Mg, Al, Ti, etc., \(\pi\)-coordination is known to be more favorable.\(^1\)–\(^8\) Simple electrostatic models based on charge transfer from X to C\(_2\) are used to explain why electropositive atoms prefer to form \(\pi\)-complexes. However, when one carbon atom is replaced by a more electropositive but isovalent atom such as silicon, it is not clear if the \(\sigma\)-complex of XCSi will be favored over the \(\pi\)-complex. In this work, we undertake a combined theoretical and experimental work on two anions AlC\(_2^-\) and AlC\(_3^-\) which help address the question of the relative stabilities of \(\sigma\)- and \(\pi\)-coordination of electropositive aluminum to C\(_2^-\) and CSi\(^-\). We found that indeed \(\sigma\)-coordination is favored in AlC\(_3^-\), in contrast to AlC\(_2^-\), where \(\pi\)-coordination occurs.

Experimental Methods

We used anion photoelectron spectroscopy (PES) to obtain electronic and vibrational information about AlC\(_2^-\), AlC\(_3^-\), and their respective neutral species. The experiments were carried out with a magnetic-bottle time-of-flight PES apparatus, equipped with a laser vaporization cluster source. Details of the experiment have been described previously.\(^9\)–\(^10\) AlC\(_2^-\) and AlC\(_3^-\) were produced by laser vaporization of a graphite/Al or graphite/Al/Si composite target, respectively, with a pure helium carrier gas, and detected by a time-of-flight mass spectrometer. The anion species of interest were selected, decelerated, and photodecomposed with two photon energies: 355 (3.496 eV) and 266 nm (4.661 eV). Photoelectron time-of-flight spectra were measured and converted to electron binding energy spectra calibrated with the known spectrum of Cu\(^+\). The electron kinetic energy resolution of the apparatus was typically 25 meV for 1 eV electrons.

Computational Methods

We initially optimized the geometries of AlC\(_2\), AlC\(_3^-\), AlC\(_3\), and AlC\(_3^-\) employing analytical gradients with polarized split-valence basis sets (6-311+G\(^d\))\(^13\)–\(^15\) using the hybrid method, which includes a mixture of Hartree–Fock exchange with density functional exchange-correlation (B3LYP).\(^14\)–\(^16\) Then, the geometries were refined using the CCSD(T)

\(^1\) The University of Utah.
\(^2\) Utah State University.
\(^3\) Washington State University and Pacific Northwest National Laboratory.

method17–19 and the same basis sets. Finally, the energies of the lowest-energy structures were refined using the CCSD(T) level of theory and the more extended 6-311+G(2df) basis sets. All core electrons were kept frozen in treating the electron correlation at the CCSD(T) levels of theory. Vertical electron detachment energies from the lowest-energy singlet structures of AlC\textsubscript{2}- and AICSi- were calculated using the outer valence Green function (OVGF) method20–24 incorporated in Gaussian-94. The 6-311+G(2df) basis sets were used in all OVGF calculations, and all calculations were performed using the Gaussian-94 program.25

Experimental Results

Figure 1 shows the PES spectra of AlC\textsubscript{2} at two wavelengths, 355 and 266 nm. The 355-nm spectrum revealed one band (X) that contains a well-resolved vibrational progression with a 590 cm-1 spacing. The 0→0 transition yields an adiabatic electron affinity (ADE) of 2.65 eV for AlC\textsubscript{2} while the strongest vibrational feature yields a vertical detachment energy (VDE) of 2.73 eV. A second detachment feature (A) was observed at 3.71 eV VDE, also with a well-resolved vibrational progression of 590 cm-1 spacing, similar to that in the X band.

Figure 2 displays the PES spectra of AICSi at two detachment photon energies. The 355-nm spectrum shows two detachment features with VDEs at 2.64 (X) and 3.15 eV (A), respectively. However, no vibrational structures were resolved for either band of the AICSi- spectrum. The 266-nm spectrum of AICSi- revealed no additional detachment features. The adiabatic electron affinity of AICSi was estimated from the onset of the X feature to be 2.50 eV, which is slightly smaller than that for AlC\textsubscript{2}.

The spectra of AlC\textsubscript{2} and AICSi- are similar, except that the A-feature of AICSi- has a considerably lower binding energy compared to that of the AlC\textsubscript{2} spectrum. The measured electron detachment energies and spectroscopic constants for AlC\textsubscript{2} and AICSi are summarized in Table 1.

Theoretical Results

AlC\textsubscript{2}-. At the B3LYP/6-311+G* level of theory, the global minimum of AlC\textsubscript{2} was found to have a linear singlet C_{ave} (Σ^+, $1\sigma^22\sigma^21\pi^23\sigma^2$) structure (characterized in Table 2). The cyclic C\textsubscript{2v} (1A_1, $1a_1^2b_2^2a_1^2b_1^23a_2^2$) was found to be a local minimum only 1.4 kcal/mol higher in energy. However, at the higher CCSD(T)/6-311+G* level of theory, the C_{ave} (Σ^+) linear structure is a second-order saddle point with the cyclic C\textsubscript{2v} (1A_1) structure being the global minimum (Table 2). The linear structure corresponds to a barrier on the intramolecular rotation of Al2+ around the C\textsubscript{2} group. The height of the internal rotation barrier is only 2.1 kcal/mol at the CCSD(T)/6-311+G(2df) level of theory.

AlC\textsubscript{2}. At the B3LYP/6-311+G* level of theory, the global minimum of AlC\textsubscript{2} was found to have a cyclic C\textsubscript{2v} (2A_1, $1a_1^2b_2^2a_1^2b_1^23a_2^2$) structure (Table 2). A linear singlet C_{ave} (Σ^+, $1\sigma^22\sigma^21\pi^23\sigma^2$) structure was found to be a local minimum, 8.7 kcal/mol higher in energy. At the CCSD(T)/6-311+G* level of theory, the C_{ave} (Σ^+) linear structure becomes a second-order saddle point while the cyclic C\textsubscript{2v} (1A_1)
structure remains the global minimum (Table 2). This structure was also found to be the global minimum in previous ab initio calculations.\(^6,^7\) As was established experimentally,\(^5\) the linear structure represents a barrier on the intermolecular rotation \(\text{Al}^+\) around the \(\text{C}_2^+\) group. The height of the internal rotation barrier is 12.3 kcal/mol at the CCSD(T)/6-311+G(2df) level of theory.

The calculated vertical and adiabatic electron detachment energies for \(\text{AlC}_2^-\) were found to be the following: \(\text{VDE} = 2.87\, \text{eV} \) (OVPG/6-311+G(2df) and \(\text{ADE} = 2.60\, \text{eV} \) (CCSD(T)/6-311+G(2df)). Both \(\text{AlC}_2^-\) and \(\text{AlC}_2^+\) are very stable thermodynamically with dissociation energies calculated to be the following: \(\Delta E = 4.52\, \text{eV} \) for \(\text{AlC}_2^-\) (\(C_2^-\), \(1\, \text{A}^+\)) \(\rightarrow \text{C}_2^- \pm \text{Al}\) (\(3\, \Sigma_g^+\)) and \(\Delta E = 5.06\, \text{eV} \) for \(\text{AlC}_2^+\) (\(C_2^+\), \(2\, \Sigma_g^+\)) \(\rightarrow \text{C}_2^+ \pm \text{Al}\) (\(2\, \Pi\)) at all the CCSD(T)/6-311+G(2df) level of theory.

\(\text{AlC}_2^-\). At the B3LYP/6-311+G* level of theory, the global minimum of \(\text{AlC}_2^-\) was found to have a linear singlet \(C_{\text{soc}}^0\) (\(1\, \Sigma^+\), \(1^2\sigma^2\sigma^3\pi^2\pi^1\pi^4\pi^2\)) structure (characterized in Table 3). The alternative linear singlet \(\text{AlSiC}_-^{-}\) \((1\, \Sigma^+)\), \(1^2\sigma^2\sigma^3\pi^2\pi^1\pi^4\pi^2\)) structure was also optimized at the B3LYP/6-311+G* level of theory, and it was found to be a second-order saddle point 60.8 kcal/mol higher in energy than the global minimum and it was excluded from further examination. The cyclic \(C_3\) (\(1\, \Lambda\^\prime\)) \((1^2\sigma^2\pi^3\pi^2\pi^1\pi^2\pi^2\pi^2\)) structure collapsed into the \(\text{AlC}_2^-\) \((1\, \Sigma^+)\) structure upon geometry optimization. However, at the CCSD(T)/6-311+G* level of theory, the \(C_{\text{soc}}^0\) \((1\, \Sigma^+)\) linear structure becomes a second-order saddle point, and a bent \(C_2\) \((1\, \Lambda\) structure becomes the global minimum (Table 3). The bent structure of \(\text{AlC}_2^-\) is very different from the global minimum cyclic structure of \(\text{AlC}_2^+\) because it does not have a \(\text{Al}^-\text{Si}\) bond and the

| Table 3. Calculated Molecular Properties of \(\text{AlC}_2^-\) and \(\text{AlC}_2^+\) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| \(\text{AlC}_2^-\), \(1\, \text{A}^+\) | \(\text{B3LYP}\) | \(\text{CCSD(T)/6-311+G*}\) | \(\text{AlC}_2^+\), \(1\, \text{A}^+\) | \(\text{B3LYP}\) | \(\text{CCSD(T)/6-311+G*}\) |
| \(\text{R(C-Al)}\), Å | 1.934 | 1.943 | 1.720 | 1.720 | 1.720 |
| \(\text{R(C-C)}\), Å | 1.265 | 1.278 | 1.265 | 1.278 | 1.278 |
| \(\text{E_{iso}}\), au | 318.51216 | 318.49832 | 318.51216 | 318.49832 | 318.49832 |
| \(\omega(\pi),\) cm\(^{-1}\) | 1251 | 1251 | 1251 | 1251 | 1251 |
| \(\omega(\sigma),\) cm\(^{-1}\) | 509 | 509 | 509 | 509 | 509 |
| \(\omega(\alpha),\) cm\(^{-1}\) | 239 i |

Table 2. Calculated Molecular Properties of \(\text{AlC}_2^-\) and \(\text{AlC}_2^+\)

<table>
<thead>
<tr>
<th>(\text{AlC}_2^-), (1, \text{A}^+)</th>
<th>(\text{B3LYP})</th>
<th>(\text{CCSD(T)/6-311+G*})</th>
<th>(\text{AlC}_2^+), (1, \text{A}^+)</th>
<th>(\text{B3LYP})</th>
<th>(\text{CCSD(T)/6-311+G*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{R(C-Al)}), Å</td>
<td>2.034</td>
<td>2.030</td>
<td>2.034</td>
<td>2.030</td>
<td>2.030</td>
</tr>
<tr>
<td>(\text{R(C-C)}), Å</td>
<td>1.263</td>
<td>1.283</td>
<td>1.263</td>
<td>1.283</td>
<td>1.283</td>
</tr>
<tr>
<td>(\text{E_{iso}}), au</td>
<td>318.60875</td>
<td>317.93499</td>
<td>318.60875</td>
<td>317.93499</td>
<td>317.93499</td>
</tr>
<tr>
<td>(\omega(\pi),) cm(^{-1})</td>
<td>1770</td>
<td>1770</td>
<td>1770</td>
<td>1770</td>
<td>1770</td>
</tr>
<tr>
<td>(\omega(\sigma),) cm(^{-1})</td>
<td>595</td>
<td>595</td>
<td>595</td>
<td>595</td>
<td>595</td>
</tr>
<tr>
<td>(\omega(\alpha),) cm(^{-1})</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
</tbody>
</table>

In all four species studied here, the B3LYP method predicted a minimum in the linear configuration that is not preserved in the CCSD(T) calculations. We believe that the artificial minima for the linear configuration are essentially due to one-configurational nature of the B3LYP method. One needs to use methods beyond the one-configurational approximation, such as CCSD(T) used here, to get reliable results for the species studied here.

stretching. However, the bending mode, which has a very low
in the neutral AlC₂. Therefore, one expects a vibrational
of the two major low-lying vertical one-electron detachment
0.04 eV is in reasonable agreement with
-1 spacing. According to our calcula-
the fact that AlC₂ has very closely spaced 1a⁻-MO or 4a⁻-MO (which are almost
degenerate because they originate from the 1π-HOMO in the
linear structure) occurs at 3.01 eV (OVGF/6-311+G(2df)). This value agrees well with the second detachment feature (A),
observed at 3.15 ± 0.06 eV. The 266-nm spectrum revealed a splitting in the second peak, which might derive from the
quasidegeneracy of the 1a⁻ and 4a⁻ MO found in our calculations.
We therefore conclude that both AlCIS⁻ and AlCISI have
quasilinear structures based on our calculations and the experimental
data.

Discussion

The overall agreement between the experimental PES spectra and the theoretical calculations is quite satisfying. In particular,
the excellent agreement between the calculations and the experimentally observed peak X in AlC₂⁻ provides strong
support for the quasilinear structure with 1a-coordination of aluminum
to C₂ in AlC₂⁻ and in AlC₂. The cyclic structure of AlC₂ was
previously found in ab initio calculations and in rare gas
matrix electron spin resonance studies by Knight and others. ⁵

The agreement between the calculations and observed PES spectral features of the AlCIS⁻ anion provides strong support
for the quasilinear structure with 1a-coordination in AlCIS⁻ and in AlCISI. The vertical and adiabatic electron
detachment energies are also very high for the AlCIS⁻ anion
(Table 1) and they can be explained in the same fashion as in the AlC₂⁻ anion. Surprisingly, both VDE and ADE of AlCIS⁻
are very close to the corresponding values in AlC₂⁻, despite the
fact that one carbon was substituted by a more electropositive
silicon atom. On the other hand, one should take into account
the fact that AlCIS⁻ has 1a-coordination, while AlC₂⁻ has
π-coordination. If we compare the 1a-complexes for both anions,
VDE(AlC₂⁻) = 3.54 eV and VDE(AlCIS⁻) = 2.86 eV, one
can see a substantial reduction in electron binding energy in
AlCIS⁻. Simple electrostatic considerations can also help to
understand why AlC₂⁻ has π-complex structure, while AlCIS⁻
has 1a-complex structure. Although the effective atomic charges
in both anions show a high degree of ionicity, the two carbon
atoms have the same charges in the cyclic AlC₂⁻, whereas in
AlCIS⁻ the carbon carries a larger negative charge than silicon,
which favors the 1a-complex configuration in the latter.

Conclusions

We report a combined experimental and theoretical investigation of AlC₂⁻ and AlCIS⁻ and their corresponding neutrals.
Photoelectron spectra of the anions were measured and the
electron detachment energies and vibrational frequencies were
obtained. The adiabatic electron affinities of AlC₂ and AlCISI
were determined to be 2.65(3) and 2.50(6) eV, respectively.
The first electronic excited state was also observed for each
species. Our theoretical calculations predicted that AlC₂⁻ and
AlC₂ both have a C₂ᵥ cyclic structure while AlCIS⁻ and AlCISI
have quasilinear structures. The agreement between the calcu-
lated and experimental spectroscopic parameters confirms the \(\pi \)-coordination of Al in AlC\(_2^- \) and \(\sigma \)-coordination of Al in AlCSi\(^- \).

Acknowledgment. The theoretical work done in Utah is supported by the National Science Foundation (CHE-9618904). The authors acknowledge the Center for High Performance Computations at the University of Utah for computer time. The experimental work done in Washington is supported by the National Science Foundation (DMR-9622733). The experiment was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle under Contract DE-AC06-76RLO 1830. L.S.W. is an Alfred P. Sloan Foundation Research Fellow. JA992102Z.