Structures - Structural Evolution

 

Return

 

 

Probing the Structural Evolution of Medium-Sized Gold Clusters: Aun (n = 27 to 35)

N. Shao, W. Huang, Y. Gao, L. M. Wang, X. Li, L. S. Wang, and X. C. Zeng

J. Am. Chem. Soc. 132, 6596-6605 (2010). [PDF]

 

 

 

Relativistic Effects and the Unique Low-Symmetry Structures of Gold Nanoclusters

W. Huang, M. Ji, C. D. Dong, X. Gu, L. M. Wang, X. G. Gong, and L. S. Wang

ACS Nano 2, 897-904 (2008). [PDF]

 

 

 

 

 

 

Structural Transition from Pyramidal to Space-Filling Amorphous in Medium-Sized Gold Clusters: Aun (n = 2126)

S. Bulusu, X. Li, L. S. Wang, and X. C. Zeng

J. Phys. Chem. C 111, 4190-4198 (2007). [PDF]

 

 

 

 

 

 

Structural Transition of Gold Nanoclusters: From the Golden Cage to the Golden Pyramid

W. Huang, S. Bulusu, R. Pal, X. C. Zeng, and L. S. Wang

ACS Nano 3, 1225-1230 (2009). [PDF]

 

 

 

 

 

 

Probing the 2D to 3D Structural Transition in Gold Cluster Anions Using Argon Tagging

W. Huang and L. S. Wang

Phys. Rev. Lett. 102, 153401-1-4 (2009). [PDF]

 

 

 

 

 

 

On the Electronic and Atomic Structures of Small AuN (N = 414) Clusters: A Photoelectron Spectroscopy and Density-Functional Study

H. Häkkinen, B. Yoon, U. Landman, X. Li, H. J. Zhai, and L. S. Wang

J. Phys. Chem. A 107, 6168-6175 (2003). [PDF] 

 

 

 

 

 

 

Observation of Earlier Two to Three Dimensional Structural Transition in Gold Cluster Anions by Isoelectronic Substitution: MAun(n = 8–11; M = Ag, Cu)

L. M. Wang, R. Pal, W. Huang, X. C. Zeng, and L. S. Wang

J. Chem. Phys. 132, 114306-1-8 (2010). [PDF]

 

 

 

 

 

 

Isomer Identification and Resolution in Small Gold Clusters

W. Huang, R. Pal, L. M. Wang, X. C. Zeng, and L. S. Wang

J. Chem. Phys. 132, 054305-1-5 (2010). [PDF]

 

 

 

 

 

 

Structural Evolution of Doped Gold Clusters: MAux (M = Si, Ge, Sn; x = 5–8)

R. Pal, L. M. Wang, W. Huang, L. S. Wang, and X. C. Zeng

J. Am. Chem. Soc. 131, 3396-3404 (2009). [PDF]

 

 

 

 

 

 

Vibrationally-Resolved Photoelectron Spectroscopy of Di-Gold Carbonyl Clusters Au2(CO)n (n = 13): Experiment and Theory

Y. L. Wang, H. J. Zhai L. Xu, J. Li, and L. S. Wang

J. Phys. Chem. A 114, 1247-1254 (2010) [PDF]

 

 

 

 

 

 

 

On the Chemical Bonding of Gold in Auro-Boron Oxide Clusters AunBO (n = 1−3)

D. Y. Zubarev, A. I. Boldyrev, J. Li, H. J. Zhai, and L. S. Wang

J. Phys. Chem. A 111, 1648-1658 (2007). [PDF]

 

 

 

 

 

 

A Photoelectron Spectroscopic and Computational Study of Sodium Auride Clusters, NanAun (n = 1–3)

L. F. Cui, Y. C. Lin, D. Sundholm, and L. S. Wang

J. Phys. Chem. A 111, 7555-7561 (2007). [PDF]

 

 

 

 

 

 

Gold as Hydrogen.  An Experimental and Theoretical Study of the Structures and Bonding in Di-Silicon Gold Clusters Si2Aun and Si2Aun (n = 2 and 4) and Comparisons to Si2H2 and Si2H4

X. Li, B. Kiran, and L. S. Wang

J. Phys. Chem. A 109, 4366-4374 (2005). [PDF]

 

 

 

 

 

Chemisorption-Induced Structural Changes and Transition from Chemisorption to Physisorption in Au6(CO)n (n = 49)

H. J. Zhai, L. L. Pan, B. Dai, B. Kiran, J. Li, and L. S. Wang

J. Phys. Chem. C 112, 11920-11928 (2008). [PDF]

 

 

 

 

 

 

Boronyls as Key Structural Units in Boron Oxide Clusters: B(BO)2 and B(BO)3

H. J. Zhai, S. D. Li, and L. S. Wang

J. Am. Chem. Soc. 129, 9254-9255 (2007). [PDF]

 

 

 

 

 

 

 

 

 

On the Electronic and Structural Properties of Tri-Niobium Oxide Clusters Nb3On (n = 3-8): Photoelectron Spectroscopy and Density Functional Calculations

W. J. Chen, H. J. Zhai, Y. F. Zhang, X. Huang, and L. S. Wang

J. Phys. Chem. A 114, 5958-5966 (2010). [PDF]

 

 

 

 

 

 

Structural and Electronic Properties of Reduced Transition Metal Oxide Clusters, M3O8 and M3O8 (M = Cr, W), from Photoelectron Spectroscopy and Quantum Chemical Calculations

S. G. Li, H. J. Zhai, L. S. Wang, and D. A. Dixon

J. Phys. Chem. A 113, 11273-11288 (2009). [PDF]

 

 

 

 

 

 

Structural Evolution, Sequential Oxidation, and Chemical Bonding in Tri-Tantalum Oxide Clusters: Ta3On and Ta3On (n = 1-8)

H. J. Zhai, B. Wang, X. Huang, and L. S. Wang

J. Phys. Chem. A. 113, 9804-9813 (2009). [PDF]

 

 

 

 

 

 

 

Probing the Electronic and Structural Properties of the Niobium Trimer Cluster and its Mono- and Di-oxides: Nb3On and Nb3On (n = 0-2)

H. J. Zhai, B. Wang, X. Huang, and L. S. Wang

J. Phys. Chem. A 113, 3866-3875 (2009). [PDF]

 

 

 

 

 

 

 

Probing the Electronic and Structural Properties of Chromium Oxide Clusters (CrO3)n and (CrO3)n (n = 1−5): Photoelectron Spectroscopy and Density Functional Calculations

H. J. Zhai, S. G. Li, D. A. Dixon, and L. S. Wang 

J. Am. Chem. Soc. 130, 5167-5177 (2008). [PDF]

 

 

 

 

 

 

Probing the Electronic Structure and Band Gap Evolution of Titanium Oxide Clusters (TiO2)n (n = 1-10) Using Photoelectron Spectroscopy

H. J. Zhai and L. S. Wang

J. Am. Chem. Soc. 129, 3022-3026 (2007). [PDF]

 

 

 

 

 

 

 

On the Structure and Chemical Bonding of Tri-Tungsten Oxide Clusters W3On and W3On (n = 710): W3O8 As A Molecular Model for O-Deficient Defect Sites in Tungsten Oxides

X. Huang, H. J. Zhai, J. Li, and L. S. Wang

J. Phys. Chem. A 110, 85-92 (2006). [PDF]

 

 

 

 

 

 

Electronic and Structural Evolution and Chemical Bonding in Ditungsten Oxide Clusters: W2On and W2On (n = 1-6)

H. J. Zhai, X. Huang, L. F. Cui, X. Li, J. Li, and L. S. Wang

J. Phys. Chem. A 109, 6019-6030 (2005). [PDF]

 

 

 

 

 

 

 

Electronic Structure and Chemical Bonding in MOn and MOn Clusters (M = Mo, W; n = 3-5): A Photoelectron Spectroscopy and ab Initio Study

H. J. Zhai, B. Kiran, L. F. Cui, X Li, D. A. Dixon, and L. S. Wang

J. Am. Chem. Soc. 126, 16134-16141 (2004). [PDF]

 

 

 

 

 

 

 

In Search of Covalently-Bound Tetra- and Penta-Oxygen Species: A Photoelectron Spectroscopic and Ab Initio Investigation of MO4 and MO5 (M = Li, Na, K, Cs)

H. J. Zhai, X. Yang, X. B. Wang, L. S. Wang, B. Elliott, and A. I. Boldyrev

J. Am. Chem. Soc. 124, 6742-6750 (2002). [PDF]

 

 

 

 

 

 

Electronic Structure and Chemical Bonding of Divanadium Oxide Clusters (V2Ox, x = 37) from Anion Photoelectron Spectroscopy

H. J. Zhai and L. S. Wang

J. Chem. Phys. 117, 7882-7888 (2002). [PDF] 

 

 

 

 

 

 

 

(MgO)n (n = 15) Clusters: Multipole-Bound Anions and Photodetachment Spectroscopy

M. Gutowski, P. Skurski, X. Li, and L. S. Wang

Phys. Rev. Lett. 85, 3145-3148 (2000). [PDF]

 

 

 

 

 

 

Structural and Electronic Properties of Iron Monoxide Clusters FenO and FenO (n = 2–6): A Combined Photoelectron Spectroscopy and Density Functional Theory Study

G. L. Gutsev, C. W. Bauschlicher, Jr., H. J. Zhai, and L. S. Wang

J. Chem. Phys. 119, 11135-11145 (2003). [PDF] 

 

 

 

 

 

 

Observation and Photoelectron Spectroscopic Study of Novel Mono- and Di-iron Oxide Molecules: FeOy (y = 1-4) and Fe2Oy (y = 15)

H. Wu, S. R. Desai, and L. S. Wang

J. Am. Chem. Soc. 118, 5296-5301 (1996).[PDF]

 

 

 

 

 

 

 

Sequential Oxygen Atom Chemisorption on Surfaces of Small Iron Clusters

L. S. Wang, H. Wu and S. R. Desai

Phys. Rev. Lett. 76, 4853-4856 (1996). [PDF]

 

 

 

 

 

 

 

 

 

Planar-to-Tubular Structural Transition in Boron Clusters: B20 as the Embryo of Single-Walled Boron Nanotubes

B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, and L. S. Wang

Proc. Natl. Acad. Sci. (USA) 102, 961-964 (2005). [PDF]

 

 

 

 

 

 

 

Structural Evolution of Silicon Nanoclusters SiN (20 ≤ N ≤ 45)

J. Bai, L. F. Cui, J. Wang, S. Yoo, X. Li, J. Jellinek, C. Koehler, T. Frauenheim, L. S. Wang, and X. C. Zeng

J. Phys. Chem. A 110, 908-912 (2006). [PDF]

 

 

 

 

 

 

Si3Ox (x = 16): Models for Oxidation of Silicon Surfaces and Defect Sites in Bulk Oxide Materials

L. S. Wang, J. B. Nicholas, M. Dupuis, H. Wu, and S. D. Colson

Phys. Rev. Lett. 78, 4450-4453 (1997). [PDF]

 

 

 

 

 

 

 

Photoelectron Spectra of Aluminum Cluster Anions: Temperature Effects and Ab Initio Simulations

J. Akola, M. Manninen, H. Hakkinen, U. Landman, X. Li, and L. S. Wang

Phys. Rev. B 60, R11297-R11300 (1999). [PDF]

 

 

 

 

 

 

 

Aluminum Cluster Anions: Photoelectron Spectroscopy and Ab-Initio Simulations

J. Akola, M. Manninen, H. Hakkinen, U. Landman, X. Li, and L. S. Wang

Phys. Rev. B 62, 13216-13228 (2000). [PDF]

 

 

 

 

 

 

Observation of Triatomic Species with Conflicting Aromaticity: AlSi2 and AlGe2

D. Y. Zubarev, X. Li, L. S. Wang, and A. I. Boldyrev

J. Phys. Chem. B 110, 9743-9746 (2006). [PDF]

 

 

 

 

 

 

 

Structure of the NaxClx+1 (x = 14) Clusters via Ab Initio Genetic Algorithm and Photoelectron Spectroscopy

A. N. Alexandrova, A. I. Boldyrev, Y. J. Fu, X. Yang, X. B. Wang, and L. S. Wang

J. Chem. Phys. 121, 5709-5719. [PDF]

 

 

 

 

 

 

Experimental and Computational Studies of Alkali-Metal Coinage-Metal Clusters

Y. C. Lin, D. Sundholm, J. Juselius, L. F. Cui, X. Li, H. J. Zhai, and L. S. Wang

J. Phys. Chem. A 110, 4244-4250 (2006). [PDF]

 

 

 

 

 

 

Electronic and Structural Evolution of Mono-Iron Sulfur Clusters, FeSn and FeSn (n = 16), From Anion Photoelectron Spectroscopy

H. J. Zhai, B. Kiran, and L. S. Wang

J. Phys. Chem. A 107, 2821-2828 (2003). [PDF]

 

 

 

 

 

 

Structural and Electronic Properties of Small Titanium Clusters: An Anion Photoelectron Spectroscopy and Density Functional Study

M. Castro, S. Liu, H. J. Zhai, and L. S. Wang

J. Chem. Phys. 118, 2116-2123 (2003). [PDF]

 

 

 

 

 

 

Vibrationally Resolved Photoelectron Spectra of TiCx (x = 25) Clusters

X. B. Wang, C. F. Ding, and L. S. Wang

J. Phys. Chem. A 101, 7699-7701 (1997). [PDF]

 

 

 

 

 

Growth Pathways of Metallocarbohedrenes: Cage-like or Cubic?

L. S. Wang and H. Cheng

Phys. Rev. Lett. 78, 2983-2986 (1997). [PDF]

 

 

 

 

 

 

Photoelectron Spectroscopy of Chromium Clusters: Observation of Even-Odd Alternations and Theoretical Interpretation

L. S. Wang, H. Wu, and H. Cheng

Phys. Rev. B 55, 12884-12887 (1997). [PDF]

 

 

 

 

 

 

Dimer Growth, Structure Transition and Antiferromagnetic Ordering in Small Cr Clusters

H. S. Cheng and L. S. Wang

Phys. Rev. Lett. 77, 51-54 (1996). [PDF]